Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging

Qian Zhang , Yuyan Liang , Hang Xing

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 902 -911.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 902 -911. DOI: 10.1007/s40242-022-2137-3
Review

Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging

Author information +
History +
PDF

Abstract

DNAzymes with RNA-cleaving activity have been widely used as biosensing and bioimaging tools for detection of metal ions. Despite the achievements, DNAzyme-based biosensors sometime suffer from false positive signals and unexpected off-target turn-on in biological environments, which are likely due to the unstable nature of the RNA site. Ways to control DNAzyme activity in order to improve the sensing performance remain a significant challenge. To meet the challenge, there is growing interest to develop synthetic strategies that can cage native DNAzyme under undesired conditions and reactivate it in target environment in order to function in a controlled manner. A variety of caging-decaging strategies have been developed to realize spatiotemporal control of the DNAzyme activity, improving its specificity and sensitivity as well as extending its application regimes. In this review, we focus on strategies to regulate the catalytic activity of DNAzyme, highlight the nucleic acid modification chemistries, and summarize three strategies to cage DNAzyme functions. Examples of using caged DNAzyme for bio-applications have also been reviewed in detail. Finally, we provide our perspectives on the potential challenges and opportunities of this emerging research topic that could advance the DNAzyme field.

Keywords

RNA-cleaving DNAzyme / Caging-decaging strategy / Spatiotemporal control / Biosensing / Bioimaging

Cite this article

Download citation ▾
Qian Zhang, Yuyan Liang, Hang Xing. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chemical Research in Chinese Universities, 2022, 38(4): 902-911 DOI:10.1007/s40242-022-2137-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou W, Saran R, Liu J. Chem. Rev., 2017, 117: 8272.

[2]

Breaker R R, Joyce G F. Chem. Biol., 1994, 1: 223.

[3]

Schlosser K, Li Y. ChemBioChem, 2010, 11: 866.

[4]

Carrigan M A, Ricardo A, Ang D N, Benner S A. Biochemistry, 2004, 43: 11446.

[5]

Santoro S W, Joyce G F. Proc. Natl. Acad. Sci., USA, 1997, 94: 4262.

[6]

Li J, Lu Y. J. Am. Chem. Soc., 2000, 122: 10466.

[7]

Carmi N, Shultz L A, Breaker R R. Chem. Biol., 199, 3: 1039.

[8]

Carmi N, Balkhi S R, Breaker R R. Proc. Natl. Acad. Sci. USA, 1998, 95: 2233.

[9]

Carmi N, Breaker R R. Bioorg. Med. Chem., 2001, 9: 2589.

[10]

Wang M, Zhang H, Zhang W, Zhao Y, Yasmeen A, Zhou L, Yu X, Tang Z. Nucleic Acids Res., 2014, 42: 9262.

[11]

Chandra M, Sachdeva A, Silverman S K. Nat. Chem. Biol., 2009, 5: 718.

[12]

Cuenoud B, Szostak J W. Nature, 1995, 375: 611.

[13]

Sreedhara A, Li Y, Breaker R R. J. Am. Chem. Soc., 2004, 126: 3454.

[14]

Flynn-Charlebois A, Wang Y, Prior T K, Rashid I, Hoadley K A, Coppins R L, Wolf A C, Silverman S K. J. Am. Chem. Soc., 2003, 125: 2444.

[15]

Ponce-Salvatierra A, Wawrzyniak-Turek K, Steuerwald U, Höbartner C, Pena V. Nature, 201, 529: 231.

[16]

Purtha W E, Coppins R L, Smalley M K, Silverman S K. J. Am. Chem. Soc., 2005, 127: 13124.

[17]

Baum D A, Silverman S K. Angew. Chem. Int. Ed., 2007, 46: 3502.

[18]

Büttner L, Javadi-Zarnaghi F, Höbartner C. J. Am. Chem. Soc., 2014, 136: 8131.

[19]

Li Y, Sen D. Nat. Struct. Biol., 199, 3: 743.

[20]

Travascio P, Li Y, Sen D. Chem. Biol., 1998, 5: 505.

[21]

Wong O Y, Pradeepkumar P I, Silverman S K. Biochemistry, 2011, 50: 4741.

[22]

Walsh S M, Sachdeva A, Silverman S K. J. Am. Chem. Soc., 2013, 135: 14928.

[23]

Chandrasekar J, Silverman S K. Proc. Natl. Acad. Sci. USA, 2013, 110: 5315.

[24]

Chandrasekar J, Wylder A C, Silverman S K. J. Am. Chem. Soc., 2015, 137: 9575.

[25]

Brandsen B M, Velez T E, Sachdeva A, Ibrahim N A, Silverman S K. Angew. Chem. Int. Ed., 2014, 53: 9045.

[26]

Zhou C, Avins J L, Klauser P C, Brandsen B M, Lee Y, Silverman S K. J. Am. Chem. Soc., 201, 138: 2106.

[27]

Liu H, Yu X, Chen Y, Zhang J, Wu B, Zheng L, Haruehanroengra P, Wang R, Li S, Lin J, Li J, Sheng J, Huang Z, Ma J, Gan J. Nat. Commun., 2017, 8: 2006.

[28]

Cepeda-Plaza M, Peracchi A. Org. Biomol. Chem., 2020, 18: 1697.

[29]

Liu J, Cao Z, Lu Y. Chem. Rev., 2009, 109: 1948.

[30]

Silverman S K. Trends Biochem. Sci., 201, 41: 595.

[31]

Cozma I, McConnell E M, Brennan J D, Li Y. Biosens. Bioelectron., 2021, 177: 112972.

[32]

Mei S H J, Liu Z, Brennan J D, Li Y. J. Am. Chem. Soc., 2003, 125: 412.

[33]

Lake R J, Yang Z, Zhang J, Lu Y. Acc. Chem. Res., 2019, 52: 3275.

[34]

Liu J, Brown A K, Meng X, Cropek D M, Istok J D, Watson D B, Lu Y. Proc. Natl. Acad. Sci. USA, 2007, 104: 2056.

[35]

Xiang Y, Lu Y. Nature Chem., 2011, 3: 697.

[36]

Torabi S-F, Wu P, McGhee C E, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. Proc. Natl. Acad. Sci. USA, 2015, 112: 5903.

[37]

Gong L, Zhao Z, Lv Y-F, Huan S-Y, Fu T, Zhang X-B, Shen G-L, Yu R-Q. Chem. Commun., 2015, 51: 979.

[38]

Chen J, Pan J, Chen S. Chem. Commun., 2017, 53: 10224.

[39]

Zhou W, Saran R, Huang P J, Ding J, Liu J. ChemBioChem, 2017, 18: 518.

[40]

Ren W, Jimmy Huang P-J, de Rochambeau D, Moon W J, Zhang J, Lyu M, Wang S, Sleiman H, Liu J. Biosens. Bioelectron., 2020, 165: 112285.

[41]

McGhee C E, Loh K Y, Lu Y. Curr. Opin. Biotechnol., 2017, 45: 191.

[42]

Wang J, Wang X, Tang H, He S, Gao Z, Niu R, Zheng Y, Han S. Sens. Actuators B Chem., 2018, 272: 146.

[43]

Khan S, Burciu B, Filipe C D M, Li Y, Dellinger K, Didar T F. ACS Nano, 2021, 15: 13943.

[44]

Qiu L, Zhang T, Jiang J, Wu C, Zhu G, You M, Chen X, Zhang L, Cui C, Yu R, Tan W. J. Am. Chem. Soc., 2014, 136: 13090.

[45]

Wu P, Hwang K, Lan T, Lu Y. J. Am. Chem. Soc., 2013, 135: 5254.

[46]

Torabi S F, Wu P, McGhee C E, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. Proc. Natl. Acad. Sci. USA, 2015, 112: 5903.

[47]

Zhang L, Huang H, Xu N, Yin Q. J. Mater. Chem. B, 2014, 2: 4935.

[48]

Hong C Y, Wu S X, Li S H, Liang H, Chen S, Li J, Yang H H, Tan W. Anal. Chem., 2017, 89: 5389.

[49]

Yang C, Yin X, Huan S Y, Chen L, Hu X X, Xiong M Y, Chen K, Zhang X B. Anal. Chem., 2018, 90: 3118.

[50]

Shen F, Zhang C, Cai Z, Wang J, Zhang X, Machuki J O, Shi H, Gao F. Anal. Chem., 2020, 92: 16158.

[51]

Shi X, Meng H M, Geng X, Qu L, Li Z. ACS Sens., 2020, 5: 3150.

[52]

Cui L, Peng R, Fu T, Zhang X, Wu C, Chen H, Liang H, Yang C J, Tan W. Anal. Chem., 201, 88: 1850.

[53]

Li L, Feng J, Fan Y, Tang B. Anal. Chem., 2015, 87: 4829.

[54]

Si H, Sheng R, Li Q, Feng J, Li L, Tang B. Anal. Chem., 2018, 90: 8785.

[55]

Zhai T T, Ye D, Shi Y, Zhang Q W, Qin X, Wang C, Xia X H. ACS Appl. Mater. Interfaces, 2018, 10: 33966.

[56]

Gao R, Xu L, Hao C, Xu C, Kuang H. Angew. Chem. Int. Ed., 2019, 58: 3913.

[57]

Xiong M, Yang Z, Lake R J, Li J, Hong S, Fan H, Zhang X B, Lu Y. Angew. Chem. Int. Ed., 2020, 59: 1891.

[58]

McGhee C E, Yang Z L, Guo W J, Wu Y T, Lyu M, DeLong C J, Hong S N, Ma Y, McInnis M G, O’Shea K S, Lu Y. ACS Cent. Sci., 2021, 7: 1809.

[59]

Eder P S, DeVine R J, Dagle J M, Walder J A. Antisense Res. Dev., 1991, 1: 141.

[60]

Li Y, Breaker R R. J. Am. Chem. Soc., 1999, 121: 5364.

[61]

Lusic H, Young D D, Lively M O, Deiters A. Org. Lett., 2007, 9: 1903.

[62]

Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Angew. Chem. Int. Ed., 2014, 53: 13798.

[63]

Wang X, Feng M, Xiao L, Tong A, Xiang Y. ACS Chem. Biol., 201, 11: 444.

[64]

Yang Z, Loh K Y, Chu Y T, Feng R, Satyavolu N S R, Xiong M, Nakamata Huynh S M, Hwang K, Li L, Xing H, Zhang X, Chemla Y R, Gruebele M, Lu Y. J. Am. Chem. Soc., 2018, 140: 17656.

[65]

Yi D, Zhao J, Li L. Angew. Chem. Int. Ed., 2021, 60: 6300.

[66]

Wang Q, Tan K, Wang H, Shang J, Wan Y, Liu X, Weng X, Wang F. J. Am. Chem. Soc., 2021, 143: 6895.

[67]

Wang X, Yi X, Huang Z, He J, Wu Z, Chu X, Jiang J H. Angew. Chem. Int. Ed., 2021, 60: 19889.

[68]

Wang W, Satyavolu N S R, Wu Z, Zhang J R, Zhu J J, Lu Y. Angew. Chem. Int. Ed., 2017, 56: 6798.

[69]

Xiao L, Gu C, Xiang Y. Angew. Chem. Int. Ed., 2019, 58: 14167.

[70]

Hwang K, Mou Q, Lake R J, Xiong M, Holland B, Lu Y. Inorg. Chem., 2019, 58: 13696.

[71]

Peng H, Li X-F, Zhang H, Le X C. Nat. Commun., 2017, 8: 14378.

[72]

Silverman S K. Nucleic Acids Res., 2005, 33: 6151.

[73]

Chaulk S G, MacMillan A M. Nucleic Acids Res., 1998, 26: 3173.

[74]

Keiper S, Vyle J S. Angew. Chem. Int. Ed., 200, 45: 3306.

[75]

Xu X, Xiao L, Gu C, Shang J, Xiang Y. ACS Omega, 2021, 6: 13153.

[76]

Cepeda-Plaza M, Null E L, Lu Y. Nucleic Acids Res., 2013, 41: 9361.

[77]

Ting R, Lermer L, Perrin D M. J. Am. Chem. Soc., 2004, 126: 12720.

[78]

Aron A T, Ramos-Torres K M, Cotruvo J A Jr., Chang C J. Acc. Chem. Res., 2015, 48: 2434.

[79]

Weissleder R. Nat. Biotechnol., 2001, 19: 316.

[80]

Dvir T, Banghart M R, Timko B P, Langer R, Kohane D S. Nano Lett., 2010, 10: 250.

[81]

Wu Z, Fan H, Satyavolu N S R, Wang W, Lake R, Jiang J H, Lu Y. Angew. Chem. Int. Ed., 2017, 56: 8721.

[82]

Lin Y, Yang Z, Lake R J, Zheng C, Lu Y. Angew. Chem. Int. Ed., 2019, 58: 17061.

[83]

Cui M R, Li X L, Xu J J, Chen H Y. ACS Appl. Mater. Interfaces, 2020, 12: 13005.

[84]

Li L L, Xing H, Zhang J J, Lu Y. Acc. Chem. Res., 2019, 52: 2415.

[85]

Zhao J, Gao J H, Xue W T, Di Z H, Xing H, Lu Y, Li L L. J. Am. Chem. Soc., 2018, 140: 578.

[86]

Qu A, Wu X, Li S, Sun M, Xu L, Kuang H, Xu C. Adv. Mater., 2020, 32: e2000184.

[87]

Xiang Z, Zhao J, Yi D, Di Z, Li L. Angew. Chem. Int. Ed., 2021, 60: 22659.

[88]

Xiang Z, Zhao J, Qu J, Song J, Li L. Angew. Chem. Int. Ed., 2022, 61: e202111836.

[89]

Qian R C, Zhou Z R, Guo W, Wu Y, Yang Z, Lu Y. J. Am. Chem. Soc., 2021, 143: 5737.

[90]

Lyu M, Kong L, Yang Z, Wu Y, McGhee C E, Lu Y. J. Am. Chem. Soc., 2021, 143: 9724.

[91]

Dass C R, Choong P F M, Khachigian L M. Mol. Cancer Ther., 2008, 7: 243.

[92]

Zhou W, Ding J, Liu J. Theranostics, 2017, 7: 1010.

[93]

Feng J, Xu Z, Liu F, Zhao Y, Yu W, Pan M, Wang F, Liu X. ACS Nano, 2018, 12: 12888.

[94]

Yan J, Tan Y L, Lin M J, Xing H, Jiang J H. Chem. Sci., 2021, 12: 1803.

[95]

Lin M J, Chen Y Y, Zhao S S, Tang R, Nie Z, Xing H. Angew. Chem. Int. Ed., 2022, 61: e202111647.

[96]

Kong Y H, Du Q, Li J, Xing H. Chem. Commun., 2022, 58: 3086.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/