Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation

Jingting Song , Jia Liu , Kian Ping Loh , Zhongxin Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1239 -1242.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1239 -1242. DOI: 10.1007/s40242-022-2130-x
Article

Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation

Author information +
History +
PDF

Abstract

Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.

Keywords

Single atom catalyst / Wacker oxidation / Ultrahigh loading / High valued chemical / Organic catalysis

Cite this article

Download citation ▾
Jingting Song, Jia Liu, Kian Ping Loh, Zhongxin Chen. Ultrahigh Loading Copper Single Atom Catalyst for Palladium-free Wacker Oxidation. Chemical Research in Chinese Universities, 2022, 38(5): 1239-1242 DOI:10.1007/s40242-022-2130-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gelalcha F G, Bitterlich B, Anilkumar G, Tse M K, Beller M. Angew. Chem. Int. Ed., 2007, 46(38): 7293.

[2]

Urgoitia G, SanMartin R, Herrero M T, Domínguez E. ACS Catal., 2017, 7(4): 3050.

[3]

Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Centure(First Edition), 2004, New York: John Wiley & Sons 601.

[4]

Baiju T V, Gravel E, Doris E, Namboothiri I N N. Tetrahedron Lett., 201, 57(36): 3993.

[5]

Michel B W, Sigman M S. Aldrichimica Acta, 2011, 44(3): 55 62

[6]

Liu B, Jin F, Wang T, Yuan X, Han W. Angew. Chem., Int. Ed., 2017, 56(41): 12712.

[7]

Zhang G, Hu X, Chiang C-W, Yi H, Pei P, Singh A K, Lei A. J. Am. Chem. Soc., 201, 138(37): 12037.

[8]

Zhang Z, Kumamoto Y, Hashiguchi T, Mamba T, Murayama H, Yamamoto E, Ishida T, Honma T, Tokunaga M. ChemSusChem, 2017, 10(17): 3482.

[9]

Gao X, Zhou J, Peng X. Catal. Commun., 2019, 122: 73.

[10]

Imbao J, van Bokhoven J A, Clark A, Nachtegaal M. Nat. Commun., 2020, 11(1): 1118.

[11]

Wang A, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.

[12]

Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nature Catalysis, 2018, 1(6): 385.

[13]

Zhang L, Ren Y, Liu W, Wang A, Zhang T. Natl. Sci. Rev., 2018, 5(5): 653.

[14]

Yan H, Su C, He J, Chen W. J. Mater. Chem. A, 2018, 6(19): 8793.

[15]

Li W-H, Yang J, Jing H, Zhang J, Wang Y, Li J, Zhao J, Wang D, Li Y. J. Am. Chem. Soc., 2021, 143(37): 15453.

[16]

Chen Z, Song J, Peng X, Xi S, Liu J, Zhou W, Li R, Ge R, Liu C, Xu H, Zhao X, Li H, Zhou X, Wang L, Li X, Zhong L, Rykov A I, Wang J, Koh M J, Loh K P. Adv. Mater., 2021, 33(34): 2101382.

[17]

Bakandritsos A, Kadam R G, Kumar P, Zoppellaro G, Medved M, Tuček J, Montini T, Tomanec O, Andrýsková P, Drahoš B, Varma R S, Otyepka M, Gawande M B, Fornasiero P, Zbořil R. Adv. Mater., 2019, 31(17): 1900323.

[18]

Vilé G, Di Liberto G, Tosoni S, Sivo A, Ruta V, Nachtegaal M, Clark A H, Agnoli S, Zou Y, Savateev A, Antonietti M, Pacchioni G. ACS Catal., 2022, 12(5): 2947.

[19]

Zhang Y, Ye S, Gao M, Li Y, Huang X, Song J, Cai H, Zhang Q, Zhang J. ACS Nano., 2022, 16(1): 1142.

[20]

Chen Z, Liu J, Koh M J, Loh K P. Adv. Mater., 2021, 33: 2103882.

[21]

Li W-H, Yang J, Wang D, Li Y. Chem, 2022, 8(1): 119.

[22]

Li F, Han G-F, Noh H-J, Kim S-J, Lu Y, Jeong H Y, Fu Z, Baek J-B. Energy Environ. Sci., 2018, 11(8): 2263.

[23]

Isbrandt E S, Sullivan R J, Newman S G. Angew. Chem., Int. Ed., 2019, 58(22): 7180.

[24]

Tang X, Wu W, Zeng W, Jiang H. Acc. Chem. Res., 2018, 51(5): 1092.

[25]

Zhan M, Zhang T, Huang H, Xie Y, Chen Y. J. Labelled Compd. Rad., 2014, 57(8): 533.

[26]

Mimoun H, Charpentier R, Mitschler A, Fischer J, Weiss R. J. Am. Chem. Soc., 1980, 102(3): 1047.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/