Insights into Promoting Effect of Sm on Catalytic Performance of the CeO2/Beta Catalyst in Direct Conversion of Bioethanol to Propylene

Huan Jin , Ding Xu , Chao Tian , Yinghong Yue , Weiming Hua , Zi Gao

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1547 -1552.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1547 -1552. DOI: 10.1007/s40242-022-2128-4
Article

Insights into Promoting Effect of Sm on Catalytic Performance of the CeO2/Beta Catalyst in Direct Conversion of Bioethanol to Propylene

Author information +
History +
PDF

Abstract

A series of Sm-doped CeO2/Beta composite catalysts with various Sm/Ce atomic ratios(0.1–0.4) were prepared by an incipient impregnation method, followed by calcination at 650 °C. They were characterized by X-ray diffraction(XRD), N2 adsorption, X-ray photoelectron spectroscopy(XPS), Raman, NH3-temperature programmed desorption(TPD) and CO2-TPD. The incorporation of Sm into CeO2/Beta increases obviously the propylene yield for the selective conversion of ethanol to propylene. The promoting effect of Sm on CeO2/Beta can be attributed to two reasons. One is more acetone intermediates are generated on the Sm-doped catalysts due to the enhanced formation of oxygen vacancies. The other is the conversion of acetone intermediate to propylene is enhanced owing to weaker and fewer acid sites on the Sm-doped catalysts.

Keywords

Bioethanol / Renewable propylene / Sm-CeO2/Beta composite / Sm doping

Cite this article

Download citation ▾
Huan Jin, Ding Xu, Chao Tian, Yinghong Yue, Weiming Hua, Zi Gao. Insights into Promoting Effect of Sm on Catalytic Performance of the CeO2/Beta Catalyst in Direct Conversion of Bioethanol to Propylene. Chemical Research in Chinese Universities, 2022, 38(6): 1547-1552 DOI:10.1007/s40242-022-2128-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun J M, Wang Y. ACS Catal., 2014, 4: 1078.

[2]

Liu H L, Jiang Y Y, Zhou R R, Chang Z L, Hou Z Y. Fuel, 2022, 321: 123980.

[3]

Blay V, Louis B, Miravalles R, Yokoi T, Peccatiello K A, Clough M, Yilmaz B. ACS Catal., 2017, 7: 6542.

[4]

Dugkhuntod P, Wattanakit C. Catalysts, 2020, 10: 245.

[5]

Song Z, Takahashi A, Mimura N, Fujitani T. Catal. Lett., 2009, 131: 364.

[6]

Goto D, Harada Y, Furumoto Y, Takahashi A, Fujitani T, Oumi Y, Sadakane M, Sano T. Appl. Catal. A, 2010, 383: 89.

[7]

Song Z, Takahashi A, Nakamura I, Fujitani T. Appl. Catal. A, 2010, 384: 201.

[8]

Bi J D, Liu M, Song C S, Wang X S, Guo X W. Appl. Catal. B, 2011, 107: 68.

[9]

Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T. Appl. Catal A, 2011, 399: 262.

[10]

Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T. Appl. Catal. A, 2012, 423: 162. 424

[11]

Meng T, Mao D S, Guo Q S, Lu G Z. Catal. Commun., 2012, 21: 52.

[12]

Huangfu J J, Mao D S, Zhai X L, Guo Q S. Appl. Catal. A, 201, 520: 99.

[13]

Zhang N, Mao D S, Zhai X L. Fuel Process. Technol., 2017, 167: 50.

[14]

Xia W, Wang J G, Wang L X, Qian C, Ma C, Huang Y X, Fan Hou M D, Chen K. Appl. Catal. B, 2021, 294: 120242.

[15]

Iwamoto M, Mizuno S, Tanaka M. Chem. Eur. J., 2013, 19: 7214.

[16]

Hayashi F, Tanaka M, Lin D, Iwamoto M. J. Catal., 2014, 316: 112.

[17]

Xia W, Wang F F, Mu X C, Chen K. Fuel Process. Technol., 2017, 166: 140.

[18]

Xia W, Wang F F, Mu X C, Chen K. Catal. Commun., 2017, 90: 10.

[19]

Xue F Q, Miao C X, Yue Y H, Hua W M, Gao Z. Green Chem., 2017, 19: 5582.

[20]

Xue F Q, Miao C X, Yue Y H, Hua W M, Gao Z. Fuel Process Technol., 2019, 186: 110.

[21]

Xu L L, Zhao R R, Zhang W P. Appl. Catal. B, 2020, 279: 119389.

[22]

Jin H, Miao C X, Yue Y H, Tian C, Hua W M, Gao Z. Catalysts, 2022, 12: 407.

[23]

Xu B, Yang H, Zhang Q T, Yuan S S, Xie A, Zhang M, Ohno T. ChemCatChem, 2020, 12: 2638.

[24]

Wang P F, Wang J, Shi J, Du X, Hao X G, Tang B, Abudula A, Guan G Q. Mol. Catal., 2020, 492: 111027.

[25]

Rygel J L, Chen Y S, Pantano C G, Shibata T, Du J C, Kokou L, Woodman R, Belcher J. J. Am. Ceram Soc., 2011, 94: 2442.

[26]

Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L. Surf. Interface Anal., 1993, 20: 508.

[27]

Liyanage A D, Perera S D, Tan K, Chabal Y, Balkus K J Jr ACS Catal., 2014, 4: 577.

[28]

Yang D, Wang L, Sun Y Z, Zhou K B. J. Phys. Chem. C, 2010, 114: 8926.

[29]

He D D, Chen D K, Hao H S, Yu J, Liu J P, Lu J C, Liu F, Wan G P, He S F, Luo Y M. Appl. Surf. Sci., 201, 390: 959.

[30]

Yang J D, Xie N, Zhang J N, Fan W L, Huang Y C, Tong Y X. Nanomaterials, 2020, 10: 2307.

[31]

Rangaswamy A, Sudarsanam P, Reddy B M. J. Rare Earths, 2015, 33: 1162.

[32]

Wang Z, Wang Q, Liao Y C, Shen G L, Gong X Z, Han N, Liu H D, Chen Y F. ChemPhysChem, 2011, 12: 2763.

[33]

Filtschew A, Hofmann K, Hess C. J. Phys. Chem. C, 201, 120: 6694.

[34]

Reddy B M, Thrimurthulu G, Katta L. J. Phys. Chem. C, 2009, 113: 15882.

[35]

Atribak I, Bueno-López A, García-García A. J. Mol. Catal. A, 2009, 300: 103.

[36]

Bueno-López A, Krishna K, Makkee M, Moulijn J A. J. Catal., 2005, 230: 237.

[37]

Lee W, Chen S Y, Chen Y S, Dong C L, Lin H J, Chen C T, Gloter A. J. Phys. Chem. C, 2014, 118: 26359.

[38]

Ilieva L, Petrova P, Pantaleo G, Zanella R, Liotta L F, Georgiev V, Boghosian S, Kaszkur Z, Sobczak J W, Lisowski W, Venezia A M, Tabakova T. Appl. Catal. B, 201, 188: 154.

[39]

Wu Z, Li M, Overbury S H. J. Catal., 2012, 285: 61.

[40]

Matheus C R V, Chagas L H, Gonzalez G G, Aguiar E F S, Appel L G. ACS Catal., 2018, 8: 7667.

[41]

Hasan M A, Zaki M I, Pasupulety L. Appl. Catal. A, 2003, 243: 81.

[42]

Jansen J C, Creyghton E J, Njo S L, van Koningsveld H, van Bekkum H. Catal. Today, 1997, 38: 205.

[43]

Creyghton E J, Ganeshie S D, Downing R S, van Bekkum H. J. Mol. Catal. A, 1997, 115: 349.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/