Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification

Kuan Pang , Huan Xue , Haixiong Liu , Jing Sun , Tianfu Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1542 -1546.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1542 -1546. DOI: 10.1007/s40242-022-2125-7
Article

Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification

Author information +
History +
PDF

Abstract

Crystal engineering, as a burgeoning technology, has been widely used to construct metalloporphyrins biomimetic catalysts. Herein, a bimetallic metal-organic framework (MOF) was constructed by 4-(4-carboxyphenyl)-1,2,4-triazole ligand, Co2+ and Zr4+ metal ions by solvothermal reaction(named PFC-88). A N,N-chelation site was found between the two adjacent ligands in PFC-88, consequently a porphyrin-like structure was obtained through chelating Fe3+ in this site by post-modification, named PFC-88-Fe. The result of a single crystal X-ray technology verified that Fe ions were successfully metalated in the N,N-chelation site of PFC-88, which is assisted by the X-ray absorption near-edge structure(XANES) spectra. An o-phenylenediamine oxidation reaction was applied to assessing the catalytic activity of PFC-88-Fe, in which the absorbance increases of phenazine-2,3-diamine at λ=418 nm were recorded by absorption spectroscopy in kinetic mode, exhibiting the application potential as a biomimetic catalyst.

Keywords

Metal-organic framework(MOF) / Bimetallic MOF / Crystal structure / Metalation

Cite this article

Download citation ▾
Kuan Pang, Huan Xue, Haixiong Liu, Jing Sun, Tianfu Liu. Chelating Metal Ions in a Metal-Organic Framework for Constructing a Biomimetic Catalyst Through Post-modification. Chemical Research in Chinese Universities, 2022, 38(6): 1542-1546 DOI:10.1007/s40242-022-2125-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Nature, 2012, 485: 185.

[2]

Lopez-Gallego F, Schmidt-Dannert C. Curr. Opin. Chem. Biol., 2010, 14: 174.

[3]

Rezaei S, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Chem. Eng. J., 2019, 356: 423.

[4]

O’Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman J L, Lloyd R C, Turner N J. Angew. Chem. Int. Ed., 2014, 53: 2447.

[5]

Li Z, Zhang Y, Su Y, Ouyang P, Ge J, Liu Z. Chem. Commun., 2014, 50: 12465.

[6]

Sheldon R A, van Pelt S. Chem. Soc. Rev., 2013, 42: 6223.

[7]

Burgun A, Coghlan C J, Huang D M, Chen W, Horike S, Kitagawa S, Alvino J F, Metha G F, Sumby C J, Doonan C J. Angew. Chem. Int. Ed., 2017, 56: 8412.

[8]

Wang P, Deng L. Chinese J. Chem., 2018, 36: 1222.

[9]

Huxley M T, Young R J, Bloch W M, Champness N R, Sumby C J, Doonan C J. Organometallics, 2019, 38: 3412.

[10]

Shaabani A, Mohammadian R, Farhid H, Karimi Alavijeh M, Amini M M. Catal. Lett., 2019, 149: 1237.

[11]

Li Y-L, Yin Q, Liu T-F, Cao R, Yuan W-B. Chinese J. Struct. Chem., 2019, 38: 2083.

[12]

Groves J T, Nemo T E, Myers R S. J. Am. Chem. Soc., 1978, 101: 1032.

[13]

Dawson J H. Science, 1988, 240: 433.

[14]

Barros V P, Faria A L, MacLeod T C O, Moraes L A B, Assis M D. Int. Biodeter. Biodegr., 2008, 61: 337.

[15]

Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X, Zhao D, Li Z, Xing H, Wei H. Anal. Chem., 2017, 89: 11552.

[16]

Huang S, Kou X, Shen J, Chen G, Ouyang G. Angew. Chem. Int. Ed., 2020, 59: 8786.

[17]

Li Q, Chen Y, Bai S, Shao X, Jiang L, Li Q. Colloid. Surface. B, 2020, 188: 110812.

[18]

Liang S, Wu X-L, Xiong J, Zong M-H, Lou W-Y. Coordin. Chem. Rev., 2020, 406: 213149.

[19]

Zhong X, Xia H, Huang W, Li Z, Jiang Y. Chem. Eng. J., 2020, 381: 122758.

[20]

Bloch W M, Burgun A, Coghlan C J, Lee R, Coote M L, Doonan C J, Sumby C J. Nat. Chem., 2014, 6: 906.

[21]

Evans J D, Sumby C J, Doonan C J. Chem. Soc. Rev., 2014, 43: 5933.

[22]

Manna K, Zhang T, Lin W. J. Am. Chem. Soc., 2014, 136: 6566.

[23]

Bloch W M, Burgun A, Doonan C J, Sumby C J. Chem. Commun., 2015, 51: 5486.

[24]

Gonzalez M I, Bloch E D, Mason J A, Teat S J, Long J R. Inorg. Chem., 2015, 54: 2995.

[25]

Gonzalez M I, Oktawiec J, Long J R. Faraday Discuss., 2017, 201: 351.

[26]

Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Adv. Mater., 2020, 32: e2003065.

[27]

Peralta R A, Huxley M T, Evans J D, Fallon T, Cao H, He M, Zhao X S, Agnoli S, Sumby C J, Doonan C J. J. Am. Chem. Soc., 2020, 142: 13533.

[28]

Liu T F, Vermeulen N A, Howarth A J, Li P, Sarjeant A A, Hupp J T, Farha O K. Eur. J. Inorg. Chem., 201, 2016: 4349.

[29]

Rimoldi M, Howarth A J, DeStefano M R, Lin L, Goswami S, Li P, Hupp J T, Farha O K. ACS Catal., 201, 7: 997.

[30]

Liu S Y, Zhou D D, He C T, Liao P Q, Cheng X N, Xu Y T, Ye J W, Zhang J P, Chen X M. Angew. Chem. Int. Ed., 201, 55: 16021.

[31]

Feng D, Liu T F, Su J, Bosch M, Wei Z, Wan W, Yuan D, Chen Y P, Wang X, Wang K, Lian X, Gu Z Y, Park J, Zou X, Zhou H C. Nat. Commun., 2015, 6: 5979.

[32]

Wang S, Shang L, Li L, Yu Y, Chi C, Wang K, Zhang J, Shi R, Shen H, Waterhouse G I, Liu S, Tian J, Zhang T, Liu H. Adv. Mater., 201, 28: 8379.

[33]

Huxley M T, Coghlan C J, Bloch W M, Burgun A, Doonan C J, Sumby C J. Phil. Trans. R. Soc. A, 2017, 375: 20160028.

[34]

Pan X, Bai L, Wang H, Wu Q, Wang H, Liu S, Xu B, Shi X, Liu H. Adv. Mater., 2018, 30: e1800180.

[35]

Wang H, Dong X, Lin J, Teat S J, Jensen S, Cure J, Alexandrov E V, Xia Q, Tan K, Wang Q, Olson D H, Proserpio D M, Chabal Y J, Thonhauser T, Sun J, Han Y, Li J. Nat. Commun., 2018, 9: 1745.

[36]

Smith G L, Eyley J E, Han X, Zhang X, Li J, Jacques N M, Godfrey H G W, Argent S P, McCormick McPherson L J, Teat S J, Cheng Y, Frogley M D, Cinque G, Day S J, Tang C C, Easun T L, Rudic S, Ramirez-Cuesta A J, Yang S, Schroder M. Nat. Mater., 2019, 18: 1358.

[37]

Sun J, Zhang X, Zhang D, Chen Y-P, Wang F, Li L, Liu T-F, Yang H, Song J, Cao R. CCS Chem., 2021, 3: 1048.

[38]

Park J, Jiang Q, Feng D, Mao L, Zhou H C. J. Am. Chem. Soc., 201, 138: 3518.

[39]

Liu C, Zhang S, Li J, Wei J, Müllen K, Yin M. Angew. Chem. Int. Ed., 2019, 58: 1638.

[40]

Huang G, Yang L, Yin Q, Fang Z B, Hu X J, Zhang A A, Jiang J, Liu T F, Cao R. Angew. Chem. Int. Ed., 2020, 59: 4385.

[41]

Zhang A A, Cheng X, He X, Liu W, Deng S, Cao R, Liu T F. Research, 2021, 2021: 9874273.

[42]

Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.

[43]

Bavykina A, Kolobov N, Khan I S, Bau J A, Ramirez A, Gascon J. Chem. Rev., 2020, 120: 8468.

[44]

Howarth A J, Liu Y, Li P, Li Z, Wang T C, Hupp J T, Farha O K. Nat. Rev. Mater., 201, 1: 15018.

[45]

Li L, Yi J-D, Fang Z-B, Wang X-S, Liu N, Chen Y-N, Liu T-F, Cao R. Chem. Mater., 2019, 31: 7584.

[46]

Feng D, Gu Z Y, Li J R, Jiang H L, Wei Z, Zhou H C. Angew. Chem. Int. Ed., 2012, 51: 10307.

[47]

Abdelhamid H N, Mahmoud G A, Sharmouk W. J. Mater. Chem. B, 2020, 8: 7548.

[48]

Gao P, Shi M, Wei R, Pan W, Liu X, Li N, Tang B. Chem. Commun., 2020, 56: 924.

[49]

He Z, Zhang W. J. Alloy. Compd., 2018, 765: 58.

[50]

Grenoble D C, Frank C W, Bargeron C B, Drickamer H G. J. Chem. Phys., 1971, 55: 1633.

[51]

Li X, Wang Z, Zhang B, Rykov A I, Ahmed M A, Wang J. Appl. Catal. B: Environ., 201, 181: 788.

[52]

Chen E X, Qiu M, Zhang Y F, He L, Sun Y Y, Zheng H L, Wu X, Zhang J, Lin Q. Angew. Chem. Int. Ed., 2022, 61: e202111622.

[53]

Yamashita T, Hayes P. Appl. Surf. Sci., 2008, 254: 2441.

[54]

Chen C, Tuo Y, Lu Q, Lu H, Zhang S, Zhou Y, Zhang J, Liu Z, Kang Z, Feng X, Chen D. Appl. Catal. B-Environ., 2021, 287: 119953.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/