Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation

Lingling Hu , Ke Liu , Guolan Ren , Jiangong Liang , Yuan Wu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 894 -901.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 894 -901. DOI: 10.1007/s40242-022-2124-8
Review

Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation

Author information +
History +
PDF

Abstract

Proteins play a central role in all domains of life, and precise regulation of their activity is essential for understanding the related biological processes and therapeutic functions. Nucleic acid aptamers, the molecular recognition components derived from systematic evolution of ligands by exponential enrichment(SELEX), can specifically identify proteins with antibody-like recognition characteristics and help to regulate their activity. This minireview covers the SELEX-based selection of protein-binding aptamers, membrane protein analytical techniques based on aptamer-mediated target recognition, aptamer-mediated functional regulation of proteins, including membrane receptors and non-membrane proteins(thrombin as a model), as well as the potential challenges and prospects regarding aptamer-mediated protein manipulation, aiming to supply some useful information for researchers in this field.

Keywords

Aptamer / Protein activity regulation / Systematic evolution of ligands by exponential enrichment(SELEX) / Membrane receptor / Thrombin

Cite this article

Download citation ▾
Lingling Hu, Ke Liu, Guolan Ren, Jiangong Liang, Yuan Wu. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation. Chemical Research in Chinese Universities, 2022, 38(4): 894-901 DOI:10.1007/s40242-022-2124-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qin X F, Yu C M, Wei J, Li L, Zhang C W, Wu Q, Liu J H, Yao S Q, Huang W. Adv. Mater., 2019, 31: 1902791.

[2]

Kuenzi B M, Remsing Rix L L, Stewart P A, Fang B, Kinose F, Bryant A T, Boyle T A, Koomen J M, Haura E B, Rix U. Nat. Chem. Biol., 2017, 13: 1222.

[3]

Fan Y F, Zhang W, Zeng L, Lei Z N, Cai C Y, Gupta P, Yang D H, Cui Q, Qin Z D, Chen Z S, Trombetta L D. Cancer Lett., 2018, 421: 186.

[4]

Cerchia C, Lavecchia A. Curr. Med. Chem., 2017, 24: 2312.

[5]

Hung M, C, Link W. J. Cell Sci., 2011, 124: 3381.

[6]

Gorostiza P, Isacoff E Y. Science, 2008, 322: 395.

[7]

Kramer R H, Mourot A, Adesnik H. Nat. Neurosci., 2013, 16: 816.

[8]

Voss S, Klewer L, Wu Y W. Curr. Opin. Chem. Biol., 2015, 28: 194.

[9]

Liu Q, Tucker C L. Curr. Opin. Chem. Biol., 2017, 40: 17.

[10]

Beyer H M, Naumann S, Weber W, Radziwill G. Biotechnology Journal, 2015, 10: 273.

[11]

Kim K S, Seeley R J, Sandoval D A. Nat. Rev. Neurosci., 2018, 19: 185.

[12]

Mogaki R, Okuro K, Ueki R, Sando S, Aida T. J. Am. Chem. Soc., 2019, 141: 8035.

[13]

Cho M H, Lee E J, Son M, Lee J H, Yoo D, Kim J W, Park S W, Shin J S, Cheon J. Nat. Mater., 2012, 11: 1038.

[14]

Qiao S L, Wang Y, Lin Y X, An H W, Ma Y, Li L L, Wang L, Wang H. ACS Appl. Mater. Interfaces, 201, 8: 17016.

[15]

Schneider H, Yanakieva D, Macarrón A, Deweid L, Becker B, Englert S, Avrutina O, Kolmar H. ChemBioChem, 2019, 20: 3006.

[16]

Sun M, Liu S, Wei X Y, Wan S, Huang M J, Song T, Lu Y, Weng X N, Lin Z, Chen H L, Song Y L, Yang C Y. Angew. Chem. Int. Ed., 2021, 60: 10431.

[17]

Long S B, Long M B, White R R, Sullenger B A. RNA, 2008, 14: 2504.

[18]

Gelinas A D, Davies D R, Edwards T E, Rohloff J C, Carter J D, Zhang C, Gupta S, Ishikawa Y, Hirota M, Nakaishi Y, Jarvis T C, Janjic N. J. Biol. Chem., 2014, 289: 8720.

[19]

Jarvis T C, Davies D R, Hisaminato A, Resnicow D I, Gupta S, Waugh S M, Nagabukuro A, Wadatsu T, Hishigaki H, Gawande B, Zhang C, Wolk S K, Mayfield W S, Nakaishi Y, Burgin A B, Stewart L J, Edwards T E, Gelinas A D, Schneider D J, Janjic N. Structure, 2015, 23: 1293.

[20]

Kahsai A W, Wisler J W, Lee J, Ahn S, Cahill lii T J, Dennison S M, Staus D P, Thomsen A R B, Anasti K M, Pani B, Wingler L M, Desai H, Bompiani K M, Strachan R T, Qin X, Alam S M, Sullenger B A, Lefkowitz R J. Nat. Chem. Biol., 201, 12: 709.

[21]

Lupu L M, Wiegand P, Holdschick D, Mihoc D, Maeser S, Rawer S, Völklein F, Malek E, Barka F, Knauer S, Uth C, Hennermann J, Kleinekofort W, Hahn A, Barka G, Przybylski M. Int. J. Mol. Sci., 2021, 22: 12832.

[22]

Wu J, Liang L, Zhang M, Zhu R, Wang Z, Yin Y, Yin B, Weng T, Fang S, Xie W, Wang L, Wang D. ACS Appl. Mater. Interfaces, 2022, 14: 12077.

[23]

Ni S J, Zhuo Z J, Pan Y F, Yu Y Y, Li F F, Liu J, Wang L Y, Wu X Q, Li D J, Wan Y Y, Zhang L H, Yang Z J, Zhang B T, Lu A P, Zhang G. ACS Appl. Mater. Interfaces, 2021, 13: 9500.

[24]

Tran T T T, Delgado A, Jeong S. BioChip Journal, 2021, 15: 109.

[25]

Liu S, Xu YX, Jiang X, Tan H, Ying BW. Biosens. Bioelectron., 2022, 208: 114168.

[26]

Tuerk C, Gold L. Science, 1990, 249: 505.

[27]

Ellington A D, Szostak J W. Nature, 1990, 346: 818.

[28]

Wu Y, Zhang L Q, Cui C, Cansiz S, Liang H, Wu C C, Teng Y T, Chen W J, Liu Y, Hou W J, Zhang X B, Tan W H. J. Am. Chem. Soc., 2018, 140: 2.

[29]

Fan J, Wang H H, Xie S, Wang M, Nie Z. ChemBioChem, 2020, 21: 282.

[30]

Zhang K X, Gao H, Deng R J, Li J H. Angew. Chem. Int. Ed., 2019, 58: 4790.

[31]

Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. Biochimie, 2018, 154: 132.

[32]

Huang C J, Lin H I, Shiesh S C, Lee G B. Biosens. Bioelectron., 2010, 25: 1761.

[33]

Liu Y, Peng C, Zhang H, Li J, Ou H, Sun Y, Wen C, Qi D, Hu X, Wu E, Tan W. Bioact. Mater., 2022, 12: 278.

[34]

Camorani S, Crescenzi E, Fedele M, Cerchia L. Biochim. Biophys. Acta, 2018, 1869: 263.

[35]

Kamatkar N, Levy M, Hébert J M. Mol. Ther. Nucleic. Acids, 2019, 17: 530.

[36]

Zumrut H E, Ara M N, Maio G E, Van N A, Batool S, Mallikaratchy P R. Anal. Biochem., 201, 512: 1.

[37]

Hahn U. Biochimie, 2018, 145: 84.

[38]

Hunter T. Cell, 2000, 100: 113.

[39]

Lemmon M A, Schlessinger J. Cell, 2010, 141: 1117.

[40]

Christopoulos A. Nat. Rev. Drug Discov., 2002, 1: 198.

[41]

Zhang Z J, Liu J W. ACS Appl. Mater. Interfaces, 201, 8: 6371.

[42]

Qu L, Qiao X Y, Qi F, Nishida N, Hoshino T. J. Chem. Inf. Model., 2021, 61: 2396.

[43]

Kang S, Hah S S. Bioconjug. Chem., 2014, 25: 1421.

[44]

Tang X C, Feng C, Pan Q H, Sun F Y, Zhu X L. Trends Anal. Chem., 2021, 145: 116456.

[45]

Jia H. R., Zhang Z., Fang X. N., Jiang M., Chen M., Chen S. S., Gu K. D., Luo Z. F., Wu F. G., Tan W. H., Mater. Today Nano, 2022, 100188

[46]

Yang W, Nan H X, Xu Z X, Huang Z X, Chen S, Li J Y, Li J, Yang H H. Anal. Chem., 2021, 93: 12265.

[47]

Wang L P, Li W, Sun J, Zhang SY, Yang S, Li J Y, Li J, Yang H H. Anal. Chem., 2018, 90: 14433.

[48]

Chen X G, Qiu L P, Cai R, Cui C, Li L, Jiang J H, Tan W H. ACS Appl. Mater. Interfaces, 2020, 12: 37845.

[49]

Ambrosetti E, Bernardinelli G, Hoffecker I, Hartmanis L, Kiriako G, de Marco A, Sandberg R, Högberg B, Teixeira A I. Nat. Nanotechnol., 2021, 16: 85.

[50]

Maruyama I N. Cells, 2014, 3: 304.

[51]

Cohen P. Nat. Rev. Drug Discov., 2002, 1: 309.

[52]

Trusolino L, Bertotti A, Comoglio P M. Nat. Rev. Mol. Cell Biol., 2010, 11: 834.

[53]

Wang L P, Liang H, Sun J, Liu Y C, Li J Y, Li J Y, Li J, Yang H H. J. Am. Chem. Soc., 2019, 141: 12673.

[54]

Chen S, Xu Z, Li S, Liang H, Zhang C, Wang Z, Li J, Li J, Yang H. Angew. Chem. Int. Ed., 2022, 61: e202113795.

[55]

Zhang J H, Qiu Z Y, Fan J H, He F, Kang W Y, Yang S H, Wang H H, Huang J, Nie Z. Angew. Chem. Int. Ed., 2021, 60: 6733.

[56]

Manandhar M, Chun E, Romesberg F E. J. Am. Chem. Soc., 2021, 143: 4859.

[57]

Padroni G, Withers J M, Taladriz S A, Reichenbach L F, Parkinson J A, Burley G A. J. Am. Chem. Soc., 2019, 141: 9555.

[58]

Zumrut H, Yang Z, Williams N, Arizala J, Batool S, Benner S A, Mallikaratchy P. Biochemistry, 2020, 59: 552.

[59]

Sefah K, Yang Z, Bradley K M, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner S A. Proc. Natl. Acad. Sci., 2014, 111: 1449.

[60]

Zhang L Q, Yang Z Y, Sefah K, Bradley K M, Hoshika S, Kim M J, Kim H J, Zhu G, Jiménez E, Cansiz S, Teng I T, Champanhac C, McLendon C, Liu C, Zhang W, Gerloff D L, Huang Z, Tan W, Benner S A. J. Am. Chem. Soc., 2015, 137: 6734.

[61]

Gasse C, Zaarour M, Noppen S, Abramov M, Marlière P, Liekens S, De Strooper B, Herdewijn P. ChemBioChem, 2018, 19: 754.

[62]

Tan J, Zhao M M, Wang J M, Li Z H, Liang L, Zhang L Q, Yuan Q, Tan W H. Angew. Chem. Int. Ed., 2019, 58: 1621.

[63]

Chen G C, Cao Y H, Tang Y X, Yang X, Liu Y Y, Huang D H, Zhang Y J, Li C Y, Wang Q B. Adv. Sci., 2020, 7: 1903783.

[64]

Chen S, Li J, Liang H, Lin X H, Li J, Yang H H. Chem. Eur. J., 2018, 24: 15988.

[65]

Ueki R, Hayashi S, Tsunoda M, Akiyama M, Liu H, Ueno T, Urano Y, Sando S. Chem. Commun., 2021, 57: 5969.

[66]

Wang M, He F, Li H, Yang S, Zhang J, Ghosh P, Wang H H, Nie Z. Nano Lett., 2019, 19: 2603.

[67]

Hong G S, Antaris A L, Dai H J. Nat. Biomed. Eng., 2017, 1: 0010.

[68]

Yuan Q, Wu Y, Wang J, Lu D Q, Zhao Z L, Liu T, Zhang X B, Tan W H. Angew. Chem., 2013, 125: 14215.

[69]

Lei Z H, Sun C X, Pei P P, Wang S F, Li D D, Zhang X, Zhang F. Angew. Chem. Int. Ed., 2019, 58: 8166.

[70]

Zhong Y T, Ma Z R, Wang F F, Wang X, Yang Y J, Liu Y L, Zhao X, Li J C, Du H T, Zhang M X, Cui Q H, Zhu S J, Sun Q C, Wan H, Tian Y, Liu Q, Wang W Z, Garcia K C, Dai H J. Nat. Biotechnol., 2019, 37: 1322.

[71]

Lino M M, Simões S, Vilaça A, Antunes H, Zonari A, Ferreira L. ACS Nano, 2018, 12: 5207.

[72]

Dai W H, Dong H F, Guo K K, Zhang X J. Chem. Sci., 2018, 9: 1753.

[73]

Scott J D, Pawson T. Science, 2009, 326: 1220.

[74]

Tang W, Hu J H, Liu D R. Nat. Commun., 2017, 8: 15939.

[75]

Amero P, Lokesh G L R, Chaudhari R R, Cardenas Z R, Schubert T, Attia Y M, Montalvo G E, Elsayed A M, Ivan C, Wang Z, Cristini V, Franciscis V D, Zhang S, Volk D E, Mitra R, Rodriguez A C, Sood A K, Lopez B G. J. Am. Chem. Soc., 2021, 143: 7655.

[76]

Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. Pharmacol. Ther., 2021, 217: 107649.

[77]

Griffin L C, Tidmarsh G F, Bock L C, Toole J J, Leung L L. Blood, 1993, 81: 3271.

[78]

Musumeci D, Montesarchio D. Pharmacol. Ther., 2012, 136: 202.

[79]

Huo S D, Zhao P K, Shi Z Y, Zou M C, Yang X T, Warszawik E, Loznik M, Göstl R, Herrmann A. Nat.Chem., 2021, 13: 131.

[80]

Chen Y J, Mellot G, van Luijk D, Creton C, Sijbesma R P. Chem. Soc. Rev., 2021, 50: 6659.

[81]

Zhao P K, Huo S D, Fan J L, Chen J L, Kiessling F, Boersma A J, Göstl R, Herrmann A. Angew. Chem. Int. Ed., 2021, 60: 14707.

[82]

Kuai H L, Zhao Z L, Mo L T, Liu H, Hu X X, Fu T, Zhang X B, Tan W H. J. Am. Chem. Soc., 2017, 139: 9128.

[83]

Mao Y, Gu J, Chang D R, Wang L, Yao L L, Ma Q H, Luo Z F, Qu H, Li Y F, Zheng L. Nucleic Acids Res., 2020, 48: 10680.

[84]

Shiang Y C, Huang C C, Wang T H, Chien C W, Chang H T. Adv. Funct. Mater., 2010, 20: 3175.

[85]

Shiang Y C, Hsu C L, Huang C C, Chang H T. Angew. Chem. Int. Ed., 2011, 50: 7660.

[86]

Wang J, Wei Y R, Hu X X, Fang Y Y, Li X Y, Liu J, Wang S F, Yuan Q. J. Am. Chem. Soc., 2015, 137: 10576.

[87]

Riccardi C, Russo K I, Musumeci D, Morvan F, Meyer A, Vasseur J J, Paduano L, Montesarchio D. ACS Appl. Mater. Interfaces, 2017, 9: 35574.

[88]

Liu K, Jin Y, Liang J G, Wu Y. Chem. J. Chinese Universities, 2021, 42(11): 3477.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/