Dual Diomarkers Triggered Prodrugs for Precise Treatment of Melanoma: Design, Synthesis and Activities

Yawen Ruan , Peiling Huang , Jiangyu Yan , Guorui Li , Jing Huang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 949 -956.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 949 -956. DOI: 10.1007/s40242-022-2121-y
Article

Dual Diomarkers Triggered Prodrugs for Precise Treatment of Melanoma: Design, Synthesis and Activities

Author information +
History +
PDF

Abstract

Targeted prodrug strategy, which utilizes the endogenous biomarkers in cancer cells as activators to release the active drug, has been well established either in the fundamental research or the clinical treatment. However, many prodrugs suffer from safety concern due to “off-target activation”. Dual or multiple biomarkers triggered prodrug may provide an effective strategy to overcoming the “off-target effect”. Melanoma cells have both high levels of reactive oxygen species(ROS) and tyrosinase(TYR), which makes them significantly different from other tumor cells and normal cells. Here we reported a series of quinazolinone-aryl boronic acid/ester-based prodrugs, which can be activated by the cascade of ROS and TYR and selectively kill melanoma cells. The structure-activity relationship(SAR) analysis revealed that mitochondria-targeting property was vital for their cytotoxicity and the dual activated effector played a significant role in their selectivity towards melanoma cells. Among these candidates, compound 4b showed the highest toxicity to B16, leading to an imbalance of the redox system in melanoma cells, causing mitochondrial DNA damage, and then promoting melanoma cells death.

Keywords

Targeted prodrug / Melanoma / Cell death / Cascade activation

Cite this article

Download citation ▾
Yawen Ruan, Peiling Huang, Jiangyu Yan, Guorui Li, Jing Huang. Dual Diomarkers Triggered Prodrugs for Precise Treatment of Melanoma: Design, Synthesis and Activities. Chemical Research in Chinese Universities, 2022, 38(4): 949-956 DOI:10.1007/s40242-022-2121-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. J. Med. Chem., 2019, 62: 9375.

[2]

Zhang J, Ning L, Huang J, Zhang C, Pu K. Chem. Sci., 2019, 11: 618.

[3]

Zawilska J, Wojcieszak J, Olejniczak A. Pharmacological Reports, 2013, 65: 1.

[4]

Johnstone T C, Suntharalingam K, Lippard S J. Chem. Rev., 201, 116: 3436.

[5]

Cheng R, Meng F, Deng C, Klok H A, Zhong Z. Biomaterials, 2013, 34: 3647.

[6]

Olbryt M. Postepy. Dermatol. Alergol., 2019, 36: 129.

[7]

Zhang Y, He X, Zhang Y, Zhao Y, Lu S, Peng Y, Lu L, Hu X, Zhan M. Chem. Eng. J., 2021, 424: 130171.

[8]

Peng H, Wang T, Li G, Huang J. Chem. J. Chinese Universities, 2021, 42(11): 3357.

[9]

Solem E, Tuczek F, Decker H. Angew. Chem. Int. Ed., 201, 55: 2884.

[10]

Bolton J L, Dunlap T. Chem. Res. Toxicol, 2017, 30: 13.

[11]

Ji Y, Dai F, Yan S, Shi J Y, Zhou B. J. Agric. Food Chem., 2019, 67: 9060.

[12]

Pu Y, Zhou B, Xiang H, Wu W, Yin H, Yue W, Yin Y, Li H, Chen Y, Xu H. Biomaterials, 2020, 259: 120329.

[13]

Bao X Z, Dai F, Wang Q, Jin X L, Zhou B. Free Radic. Biol. Med., 2019, 134: 406.

[14]

Bai M, Huang J, Zheng X, Song Z, Tang M, Mao W, Yuan L, Wu J, Weng X, Zhou X. J. Am. Chem. Soc., 2010, 132: 15321.

[15]

Jawaid S, Khan T H, Osborn H M, Williams N A. Anticancer Agents Med. Chem., 2009, 9: 717.

[16]

Purohit V, Simeone D M, Lyssiotis C A. Cancers(Basel), 2019, 11: 955.

[17]

Zhang W, Hu X, Shen Q, Xing D. Nat. Commun., 2019, 10: 1704.

[18]

Ding Z, Cen J, Wu Y, Zhong K, Liu G, Hu J, Liu S. Giant, 2020, 1: 100012.

[19]

Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S. J. Am. Chem. Soc., 201, 138: 10452.

[20]

Wang L, Xie S, Ma L, Chen Y, Lu W. Eur. J. Med. Chem., 201, 116: 84.

[21]

Kim E J, Bhuniya S, Lee H, Kim H M, Cheong C, Maiti S, Hong K S, Kim J S. J. Am. Chem. Soc., 2014, 136: 13888.

[22]

Kuang Y, Balakrishnan K, Gandhi V, Peng X. J. Am. Chem. Soc., 2011, 133: 19278.

[23]

Reshetnikov V, Daum S, Janko C, Karawacka W, Tietze R, Alexiou C, Paryzhak S, Dumych T, Bilyy R, Tripal P, Schmid B, Palmisano R, Mokhir A. Angew. Chem. Int. Ed., 2018, 57: 11943.

[24]

Xu J, Zhang Y, Yu H, Gao X, Shao S. Anal. Chem., 201, 88: 1455.

[25]

Ni Y, Liu H, Dai D, Mu X, Xu J, Shao S. Anal. Chem., 2018, 90: 10152.

[26]

Guo H, Aleyasin H, Dickinson B C, Haskew-Layton R E, Ratan R R. Cell Biosci., 2014, 4: 64.

[27]

Li G, Yang Y, Zhang Y, Huang P, Yan J, Song Z, Yuan Q, Huang J. CCS Chemistry, 2021 1622.

[28]

Peng H, Wang T, Li G, Huang J, Yuan Q. Anal. Chem., 2022, 94: 1070.

[29]

Wu X, Li L, Shi W, Gong Q, Ma H. Angew. Chem. Int. Ed., 201, 55: 14728.

[30]

Liu S, Bu L, Zhang Y, Yan J, Li L, Li G, Song Z, Huang J. Anal. Chem., 2021, 93: 5267.

[31]

Chen W, Fan H, Balakrishnan K, Wang Y, Sun H, Fan Y, Gandhi V, Arnold L A, Peng X. J. Med. Chem., 2018, 61: 9132.

[32]

Winder A J, Harris H. Eur. J. Biochem., 1991, 198: 317.

[33]

Förster T. Angew. Chem. Int. Ed., 1969, 8: 333.

[34]

Li Y, Zhou H, Chen J, Shahzad S, Yu C. Biosens. Bioelectron., 201, 76: 38.

[35]

Samuni A M, Chuang E Y, Krishna M C, Stein W, Degraff W, Russo A, Mitchell J B. Proc. Natl. Acad. Sci. USA, 2003 100.

[36]

Felim A, Urios A, Neudörffer A, Herrera G, Blanco M, Largeron M. Chem. Res. Toxicol., 2007, 20: 685.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/