Recent Progress in Mass Spectrometry-based Metabolomics for Colorectal Cancer
Chulei Xiao , Quan Chi , Xian Wang
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 886 -893.
Recent Progress in Mass Spectrometry-based Metabolomics for Colorectal Cancer
Metabolomics, one of the latest omics technologies, is employed to reveal overall metabolic trajectories, identify disease causative mechanisms and provide information for preventive diagnosis and drug targeting. Cancer is a disease known to alter cellular metabolism and so metabolomics can play an important role in the early diagnosis of cancer and in the evaluation of medical interventions and treatments for cancer. Many metabolomics studies rely on high-sensitive and high-throughput mass spectrometry platforms. In recent years, various mass spectrometry(MS) methodologies have been developed and enriched the scope of metabolite detection, contributing to disease studies, such as diabetes, cancer, and depression. Colorectal cancer is the third most diagnosed cancer worldwide and its incidence ranked third in China. This review focuses on the mass spectrometry technologies in metabolomics and summarizes the progress of metabolomics research in colorectal cancer.
Metabolomics / Mass spectrometry / Colorectal cancer / Biomarker
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
Ala M., Int. Rev. Immunol., 2021, 1 |
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Hang D., Zeleznik O. A., Lu J., Joshi A. D., Wu K., Hu Z., Shen H., Clish C. B., Liang L., Eliassen A. H., Ogino S., Meyerhardt J. A., Chan A. T., Song M., European Journal of Epidemiology, 2022, https://doi.org/10.1007/s10654-021-00834-5 |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
Choi S.-C., Brown J., Gong M., Ge Y., Zadeh M., Li W., Byron P. C., Michailidis G., Timothy J. G., Mohamadzadeh M., Morel L., Sci. Transl. Med., 2020, 12, eaax2220 |
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
Dermadi D., Valo S., Ollila S., Soliymani R., Sipari N., Pussila M., Sarantaus L., Linden J., Baumann M., Nyström M., 2017, 77, 3352 |
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
/
| 〈 |
|
〉 |