Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine

Junlun Zhu , Qian Cui , Wei Wen , Xiuhua Zhang , Shengfu Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 919 -927.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 919 -927. DOI: 10.1007/s40242-022-2114-x
Article

Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine

Author information +
History +
PDF

Abstract

Although great progress has been made in the advancement of nanozymes, most of the studies focus on mimicking peroxidase, oxidase, and catalase, while relatively few studies are used to mimic laccase. However, the use of nanomaterials to mimic laccase activity will have great potential in environmental and industrial catalysis. Herein, Cu/CuO-graphene foam with laccase-like activity was designed for the identification of phenolic compounds and the detection of epinephrine. In a typical experiment, the formation mechanism of Cu/CuO-graphene foam was investigated during the pyrolysis process by thermogravimetric-mass spectrometry. As a laccase mimic, Cu/CuO-graphene foam exhibited excellent catalytic activity with a Michaelis-Menten constant and a maximum initial velocity of 0.17 mmol/L and 0.012 µmol·L−1·s−1, respectively. Based on this principle, Cu/CuO-graphene foam nanozyme could differentially catalyze phenolic compounds and 4-aminoantipyrine for simultaneous identification of phenolic compounds. Furthermore, a colorimetric sensing platform was fabricated for the quantitative determination of epinephrine, showing linear responses to epinephrine in the range of 3 µg/mL to 20 µg/mL with the detection limit of 0.2 µg/mL. The proposed Cu/CuO-graphene foam nanozyme could be applied for the identification of phenolic compounds and the detection of epinephrine, showing great potential applications for environmental monitoring, biomedical sensing, and food detection fields.

Keywords

Nanozyme / Laccase-like activity / Cu/CuO-graphene foam / Phenolic compound / Epinephrine

Cite this article

Download citation ▾
Junlun Zhu, Qian Cui, Wei Wen, Xiuhua Zhang, Shengfu Wang. Cu/CuO-Graphene Foam with Laccase-like Activity for Identification of Phenolic Compounds and Detection of Epinephrine. Chemical Research in Chinese Universities, 2022, 38(4): 919-927 DOI:10.1007/s40242-022-2114-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Y, Ren J, Qu X. Chem. Rev., 2019, 119(6): 4357.

[2]

Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Chem. Soc. Rev., 2019, 48: 1004.

[3]

Wang X, Hu Y, Wei H. Inorg. Chem. Front., 201, 3: 41.

[4]

Wang H, Wan K, Shi X. Adv. Mater., 2018, 31(45): 1805368.

[5]

Luo W, Zhu C, Su S, Li D, He Y, Huang Q, Fan C. ACS Nano, 2010, 4(12): 7451.

[6]

Yao T, Tian Z, Zhang Y, Qu Y. ACS Appl. Mater. Interfaces, 2019, 11: 195.

[7]

Han L, Zhang H, Chen D, Li F. Adv. Funct. Mater., 2018, 28: 1800018.

[8]

Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L. Nat. Commun., 2018, 9: 1440.

[9]

Ding H, Wang D, Huang H, Chen X, Wang J, Sun J, Zhang J, Lu L, Miao B, Cai Y, Fan K, Lu Y, Dong H, Yan X, Nie G, Liang M. Nano Res., 2022, 15(2): 1554.

[10]

Liu Y, Xu B, Lu M, Li S, Guo J, Chen F, Xiong X, Yin Z, Liu H, Zhou D. Bioactive Materials, 2022, 12: 246.

[11]

Wu J, Li S, Wei H. Nanoscale Horiz., 2018, 3: 367.

[12]

Zeng R, Wang W, Cai G, Huang Z, Tao J, Tang D, Zhu C. Nano Energy, 2020, 74: 104931.

[13]

Zhu Y, Wang W, Cheng J, Qu Y, Dai Y, Liu M, Yu J, Wang C, Wang H, Wang S, Zhao C, Wu Y, Liu Y. Angew. Chem. Int. Ed., 2021, 133: 9566.

[14]

Su Y, Wu F, Song Q, Wu M, Mohammadniaei M, Zhang T, Liu B, Wu S, Zhang M, Li A, Shen J. Biomaterials, 2022, 281: 121325.

[15]

Zhu J, Peng X, Nie W, Wang Y, Gao J, Wen W, Selvaraj J N, Zhang X, Wang S. Biosens. Bioelectron., 2019, 141: 111450.

[16]

Zeng R, Luo Z, Zhang L, Tang D. Anal. Chem., 2018, 90: 12299.

[17]

Lin S., Cheng Y., Zhang H., Wang X., Zhang Y., Zhang Y., Miao L., Zhao X., Wei H., Small, 2020, 1902123

[18]

Yu Z, Cai G, Liu X, Tang D. ACS Appl. Mater. Interfaces, 2020, 12: 40133.

[19]

Yu Z, Cai G, Liu X, Tang D. Anal. Chem., 2021, 93: 2916.

[20]

Zhou W, Zhang W, Cai Y. Chem. Eng. J., 2021, 403: 126272.

[21]

Bilal M, Rasheed T, Nabeel F, Iqbal H M N, Zhao Y. J. Environ. Manag., 2019, 234: 253.

[22]

Ko C H, Fan C. J. Hazard. Mater., 2010, 181: 763.

[23]

Mayer A M, Staples R C. Phytochemistry, 2002, 60: 551.

[24]

Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. ACS Appl. Mater. Interfaces, 2017, 9: 1352.

[25]

Rashtbari S, Dehghan G. J. Hazard. Mater., 2021, 406: 124340.

[26]

Wang J, Huang R, Qi W, Su R, Binks B P, He Z. Appl. Catal. B: Environ., 2019, 254: 452.

[27]

Hu X, Chen K, Guo K, Xiang L, Wen Z, Ci S. Electrochimica Acta, 2021, 389: 138518.

[28]

Ji D, Zhou H, Tong Y, Wang J, Zhu M, Chen T, Yuan A. Chem. Eng. J., 2017, 313: 1623.

[29]

Wang W, Zhou Q, Fei X, He Y, Zhang P, Zhang G, Peng L, Xie W. CrystEngComm, 2010, 12(7): 2232.

[30]

Zhang X, Zhou J, Song H, Chen X, Fedoseeva Y V, Okotrub A V, Bulusheva L G. ACS Appl. Mater. Interfaces, 2014, 6(19): 17236.

[31]

Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, Lu S, Xu R, Zhao J. Carbon, 2020, 156: 506.

[32]

Mohamed H SH, Li C F, Wu L, Shi W H, Dong W D, Liu J, Hu Z Y, Chen L H, Li Y, Su B L. Chem. Eng. J., 2021, 407: 126941.

[33]

Dong X., Fang Z., Gu Y., Zhou X., Tian C., Chin. Chem. Lett., 2022, DOI: https://doi.org/10.1016/j.cclet.2022.03.018

[34]

Zhu J, Nie W, Wang Q, Li J, Li H, Wen W, Bao T, Xiong H, Zhang X, Wang S. Carbon, 2018, 129: 29.

[35]

Duan Y X, Meng F L, Liu K H, Yi S S, Li S J, Yan J M, Jiang Q. Adv. Mater., 2018, 30(14): 1706194.

[36]

Zhang P, Song T, Wang T, Zeng H. Appl. Catal. B: Environ., 2018, 225: 172.

[37]

He Y, Yin M, Sun J, Chen J, Jiao K, Wen J, Chen Y, Wang B, Gao F, Wang I. Chem. Commun., 2022, 58: 2995.

[38]

Gusain R, Kumar P, Sharma O P, Jain S L, Khatri O P. Appl. Catal. B: Environ., 201, 181: 352.

[39]

Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, Weng Q, Jiang X, Mitome M, Golberg D, Bando Y. Nat. Commun., 2013, 4: 2905.

[40]

Han K, Liu Z, Li P, Yu Q, Wang W, Lao CY, He D, Zhao W, Suo G, Guo H, Song L, Qin M, Qu X. Energy Storage Materials, 2019, 22: 185.

[41]

Wang Y F, Liang Y, Wu YF, Yang J, Zhang X, Cai D, Peng X, Kurmoo M, Zeng M H. Angew. Chem. Int. Ed., 2020, 59(32): 13232.

[42]

Pan B, Peng X, Wang Y, An Q, Zhang X, Zhang Y, Teets T S, Zeng M H. Chem. Sci., 2019, 10(17): 4560.

[43]

An Q, Pan B, Li L, Peng X, Zeng M H. Chin. J. Chem., 2021, 39(9): 2529.

[44]

Chambers DA, Cohen RL, Perlman RL. Neurochemistry International, 1993, 22: 95.

[45]

Bergmann ED, Goldschmidt Z. J. Med. Chem., 1968, 11: 1121.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/