Visualization of Ferroelectric Domains in Thin Films of Molecular Materials Using Confocal Micro-Raman Spectroscopy

Wenqin Zhou , Zijie Feng , Yuan Xiong , Guowei Du , Xiumei Lin , Qidong Su , Yuheng Lou , Shili An , Yumeng You

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1394 -1399.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1394 -1399. DOI: 10.1007/s40242-022-2102-1
Article

Visualization of Ferroelectric Domains in Thin Films of Molecular Materials Using Confocal Micro-Raman Spectroscopy

Author information +
History +
PDF

Abstract

Ferroelectrics are an important class of functional materials. Among all their unique properties, the study of their ferroelectric domains and domain walls is of great interest due to their importance in ferroelectric applications. There are many methods to characterize ferroelectric domains, namely, scanning probe microscopy, optical microscopy, electron microscopy, etc. Currently, newly emerged molecular ferroelectrics are attracting much attention from chemists, physicists and researchers in material sciences due to their structural flexibility, light mass, simple fabrication, etc. However, for the characterization of molecular ferroelectric domains, most conventional methods require either a complicated preparation process or direct contact between physical probes and material surfaces, limiting the development of molecular ferroelectric materials. In this report, we have demonstrated that confocal micro-Raman spectroscopy, as a nondestructive and noncontact in-situ method, is very suitable for studying the ferroelectric polarization and structures of domains in molecular ferroelectrics. Taking recently reported molecular ferroelectric trimethylchloromethyl ammonium trichlorocadmium(II) (TMCM-CdCl3) as an example, the non-180° domains have been characterized and visualized at different temperatures. Such a simple and extendable method requires minimum sample preparation, which would further benefit the research of molecular ferroelectric domain engineering and promote the miniaturization and integration of molecular ferroelectric films.

Keywords

Molecular ferroelectric / Ferroelectric film / Domain / Polarized Raman spectroscopy / Raman imaging

Cite this article

Download citation ▾
Wenqin Zhou, Zijie Feng, Yuan Xiong, Guowei Du, Xiumei Lin, Qidong Su, Yuheng Lou, Shili An, Yumeng You. Visualization of Ferroelectric Domains in Thin Films of Molecular Materials Using Confocal Micro-Raman Spectroscopy. Chemical Research in Chinese Universities, 2022, 38(6): 1394-1399 DOI:10.1007/s40242-022-2102-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pan Q, Xiong Y A, Sha T T, You Y M. Mater. Chem. Front., 2021, 5: 44.

[2]

Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W. Science, 2009, 324: 63.

[3]

Lewis I R, Edwards H. Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line, 2001 1st Ed. Boca Raton: CRC Press.

[4]

Scott J F. Science, 2007, 315: 954.

[5]

Wang J J, Fortino D, Wang B, Zhao X, Chen L Q. Adv. Mater., 2020, 32: 1906224.

[6]

Zhang H Y, Tang Y Y, Shi P P, Xiong R G. Accounts. Chem. Res., 2019, 52: 1928.

[7]

Tang Y Y, Zhang W Y, Li P F, Ye H Y, You Y M, Xiong R G. J. Am. Chem. Soc., 201, 138: 15784.

[8]

Morita H, Tsunashima R, Nishihara S, Inoue K, Omura Y, Suzuki Y, Kawamata J, Hoshino N, Akutagawa T. Angew. Chem. Int. Edit., 2019, 58: 9184.

[9]

Sun Z, Yi X, Tao K, Ji C, Liu X, Li L, Han S, Zheng A, Hong M, Luo J. Angew. Chem. Int. Edit., 2018, 57: 9833.

[10]

Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X, Dan J, Chen J, Luo Z, Pennycook S J, Neto A H C, Loh K P. Nano. Lett., 2018, 18: 6340.

[11]

Zhang W, Xiong R G. Chem. Rev., 2012, 112: 1163.

[12]

You Y M, Liao W Q, Zhao D, Ye H Y, Zhang Y, Zhou Q, Niu X, Wang J, Li P F, Fu D W, Wang Z, Gao S, Yang K, Liu J-M, Li J, Yan Y, Xiong R G. Science, 2017, 357: 306.

[13]

Liao W Q, Tang Y Y, Li P F, You Y M, Xiong R G. J. Am. Chem. Soc., 2017, 139: 18071.

[14]

Ghosh P S, Lisenkov S, Ponomareva I. Phys. Rev. Lett., 2020, 125: 207601.

[15]

Song X J, Zhang Z X, Chen X G, Zhang H Y, Pan Q, Yao J, You Y M, Xiong R G. J. Am. Chem. Soc., 2020, 142: 9000.

[16]

Shur V Y. Advanced Piezoelectric Materials, 2010, Cambridge: Woodhead Publishing

[17]

Shur V Y. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, 2008, Cambridge: Woodhead Publishing

[18]

López-Juárez R, Novelo-Peralta O, González-García F, Rubio-Marcos F, Villafuerte-Castrejón M-E. J. Eur. Ceram. Soc., 2011, 31: 1861.

[19]

Hirohashi J, Yamada K, Kamio H, Uchida M, Shichijyo S. J. Appl. Phys., 2005, 98: 034107.

[20]

Horiuchi S, Tokura Y. Nat. Mater., 2008, 7: 357.

[21]

Eerenstein W, Mathur N D, Scott J F. Nature, 200, 442: 759.

[22]

Lines M E, Glass A M. Principles and Applications of Ferroelectrics and Related Materials, 2001, Oxford: Oxford University Press.

[23]

Shur V Y, Lobov A I, Shur A G, Kurimura S, Nomura Y, Terabe K, Liu X Y, Kitamura K. Appl. Phys. Lett., 2005, 87: 022905.

[24]

Li L, Xie L, Pan X. Rep. Prog. Phys., 2019, 82: 126502.

[25]

Bonnell D A, Garra J. Rep. Prog. Phys., 2008, 71: 044501.

[26]

Kalinin S V, Rodriguez B J, Jesse S, Karapetian E, Mirman B, Eliseev E A, Morozovska A N. Annu. Rev. Mater. Res., 2007, 37: 189.

[27]

Zhang H Y, Song X J, Chen X G, Zhang Z X, You Y M, Tang Y Y, Xiong R G. J. Am. Chem. Soc., 2020, 142: 4925.

[28]

Xiong Y A, Sha T T, Pan Q, Song X J, Miao S R, Jing Z Y, Feng Z J, You Y M, Xiong R G. Angew. Chem. Int. Edit., 2019, 58: 8857.

[29]

Sha T-T, Xiong Y A, Pan Q, Chen X G, Song X J, Yao J, Miao S R, Jing Z Y, Feng Z J, You Y M, Xiong R G. Adv. Mater., 2019, 31: 1901843.

[30]

Zelenovskiy P S, Fontana M D, Shur V Y, Bourson P, Kuznetsov D K. Appl. Phys. A: Mater., 2010, 99: 741.

[31]

Zhang S, Mao N, Zhang N, Wu J, Tong L, Zhang J. ACS. Nano., 2017, 11: 10366.

[32]

Zelenovskiy P, Shur V, Kuznetsov D, Mingaliev E, Fontana M, Bourson P. Phys. Solid. State., 2011, 53: 109.

[33]

Deluca M, Sakashita T, Pezzotti G. Appl. Phys. Lett., 2007, 90: 51919.

[34]

Deluca M, Sakashita T, Galassi C, Pezzotti G. J. Eur. Ceram. Soc., 200, 26: 2337.

[35]

Ma C, Chen F, Song X, Chen M, Gao L, Wang P, Wen J, Yang Z, Tang Y, Zhao K, Liu S. Adv. Funct. Mater., 2021, 31: 2100691.

[36]

Gao K, Zhang B, Cao Y, Chen X. Roy. Soc. Open. Sci., 2018, 5: 181397.

[37]

Zafar Z, Zafar A, Guo X, Lin Q, Yu Y. J. Raman. Spectrosc., 2019, 50: 1576.

[38]

Guo T M, Gao F F, Li Z G, Liu Y, Yu M H, Li W. APl. Mater., 2020, 8: 101106.

[39]

Sholl D, Steckel J A. Density Functional Theory: A Practical Introduction, 2011, Hoboken, New Jersey: John Wiley & Sons

[40]

Merrick J P, Moran D, Radom L. J. Phys. Chem. A, 2007, 111: 11683.

[41]

Gosniowska M, Ciunik Z, Bator G, Jakubas R, Baran J. J. Mol. Struct., 2000, 555: 243.

[42]

Mlik Y, Daoud A, Couzi M. Phys. Status. Solidi. A., 1979, 52: 175.

[43]

Hossain M A, Ahmed F, Srivastava J. Phys. Status. Solidi. A., 1995, 151: 299.

[44]

Abid H, Trigui A, Mlayah A, Hlil EK, Abid Y. Results. Phys., 2012, 2: 71.

[45]

Liao W Q, Tang Y Y, Li P F, You Y M, Xiong R G. J. Am. Chem. Soc., 2018, 140: 3975.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/