Ni-W Catalysts Supported on Mesoporous SBA-15: Trace W Steering CO2 Methanation

Kai He , Shijia Liu , Guiyan Zhao , Yucai Qin , Yanfeng Bi , Lijuan Song

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1504 -1511.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1504 -1511. DOI: 10.1007/s40242-022-2096-8
Article

Ni-W Catalysts Supported on Mesoporous SBA-15: Trace W Steering CO2 Methanation

Author information +
History +
PDF

Abstract

A series of Ni-W catalysts supported on mesoporous SBA-15 with different Ni:W ratios(Ni xW/SBA-15, Ni-5%, x=1, 10, 50) was prepared and fully characterized by powder X-ray diffraction(PXRD), Brunner-Emmet-Teller(BET), transmission electronic microscopy(TEM), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectroscopy(XPS). High-resolution TEM images, XPS measurements, H2-TPR experiments coupled with PXRD results determined the evolution of Ni and W species. It is found that a trace amount of W from H2WO4 can significantly improve Ni dispersion on SBA-15 (Ni50W/SBA-15) with Ni0 and non-stoichiometric WO x species as small as ca. 3.6 nm. The prepared Ni xW/SBA-15 was utilized for CO2 hydrogenation, which showed that a higher W content restrained the CO2 hydrogenation while a lower W ratio promoted both conversion rate and selectivity for methane compared with Ni/SBA-15. The Ni50W/SBA-15 catalyst showed the best performance with a 93.3% CO2 conversion rate and 99.7% selectivity for methane at 400 oC under 0.1 MPa and maintained ca. 97% initial performance for 24 h. Tracking product evolution experiments by in-situ Fourier transform infrared spectrascopy(FTIR) indicated that a small amount of W can modify the surface of Ni particles by geometric coverage and electronic modification, which facilitates the adsorption of the CO intermedia and results in the formation of CH4. This work provides a new clue to fabricating efficient CO2 conversion bimetallic materials.

Keywords

Ni-W catalyst / SBA-15 / CO2 reduction / Methanation

Cite this article

Download citation ▾
Kai He, Shijia Liu, Guiyan Zhao, Yucai Qin, Yanfeng Bi, Lijuan Song. Ni-W Catalysts Supported on Mesoporous SBA-15: Trace W Steering CO2 Methanation. Chemical Research in Chinese Universities, 2022, 38(6): 1504-1511 DOI:10.1007/s40242-022-2096-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacDowell N, Fennell P S, Shah N, Maitland GC. Nat. Clim. Change, 2017, 7: 243.

[2]

Hepburn C, Adlen E, Beddington J, Carter E A, Fuss S, MacDowell N, Minx J C, Smith P, Williams C K. Nature, 2019, 575: 87.

[3]

De S, Dokania A, Ramirez A, Gascon J. ACS Catal., 2020, 10: 14147.

[4]

Sabatier P, Senderens JB. C. R. Acad. Sci. Paris, 1902, 134: 514.

[5]

Ali N, Bilal M, Nazir MS, Khan A, Ali F, Iqbal H M N. Sci. Total. Environ., 2020, 712: 136482.

[6]

Tsiotsias A I, Charisiou N D, Yentekakis I V, Goula M A. Nanomaterials-Basel., 2021, 11: 28.

[7]

Sreedhar I, Varun Y, Singh S A, Venugopal A, Reddy B M. Catal. Sci. Technol., 2019, 9: 4478.

[8]

Liao L, Chen L, Ye R-P, Tang X, Liu J. Chem—Asian. J., 2021, 16: 678.

[9]

Xu L, Cui Y, Chen M, Wen X, Lv C, Wu X, Wu C-E, Miao Z, Hu X. Ind. Eng. Chem. Res., 2021, 60: 8056.

[10]

Rahmani S, Meshkani F, Rezaei M. Environ. Prog. Sustain., 2019, 38: 118.

[11]

Zhang R, Wei A, Zhu M, Wu X, Wang H, Zhu X, Ge Q. J. CO2. Util., 2021, 52: 101678.

[12]

Li F, Lu D-Y, Zhong Q, Tan F, Li W, Liao W, Zhao X. RSC Adv., 2020, 10: 1.

[13]

Italiano C, Llorca J, Pino L, Ferraro M, Antonucci V, Vita A. Appl. Catal. B: Environ., 2020, 264: 118494.

[14]

Hu L, Urakawa A. J. CO2. Util., 2018, 25: 323.

[15]

Romero-Sáez M, Dongil A B, Benito N, Espinoza-González R, Escalona N, Gracia F. Appl. Catal. B: Environ., 2018, 237: 817.

[16]

Ren J, Qin X, Yang J-Z, Qin Z-F, Guo H-L, Lin J-Y, Li Z. Fuel Process Technol., 2015, 137: 204.

[17]

Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Int. J. Hydrogen. Energ., 2012, 37: 5527.

[18]

Varvoutis G, Lykaki M, Stefa S, Papista E, Carabineiro S A C, Marnellos G E, Konsolakis M. Catal. Commun., 2020, 142: 106036.

[19]

Muroyama H, Tsuda Y, Asakoshi T, Masitah H, Okanishi T, Matsui T, Eguchi K. J. Catal., 201, 343: 178.

[20]

Han Y, Wen B, Zhu M, Dai B. J. Rare Earth, 2018, 36: 367.

[21]

Zhang J, Xin Z, Meng X, Tao M. Fuel, 2013, 109: 693.

[22]

Bukhari S N, Chong C C, The L P, Vo D-V N, Ainirazali N, Triwahyono S, Jalil A A, Setiabudi H D. Int. J. Hydrogen Energ., 2019, 44: 20792.

[23]

Bacariza M C, Graça I, Bebiano S S, Lopes J M, Henriques C. Chem. Eng. Sci., 2018, 175: 72.

[24]

Liu M-H, Chen H-A, Chen C-S, Wu J-H, Wu H-C, Yang C-M. Nanoscale, 2019, 11: 20741.

[25]

Li Y, Zhang H, Zhang L, Zhang H. Int. J. Hydrogen Energ., 2019, 44: 13354.

[26]

Zhang W, Zhu K, Ren W, He H, Liang H, Zhai Y, Li W. Adv. Mater. Interfaces, 2021 2101528.

[27]

Zhao D, Feng J, Huo Q, Melosh N, Fredrickson Glenn H, Chmelka Bradley F, Stucky Galen D. Science, 1998, 279: 548.

[28]

Li Z, Das S, Hongmanorom P, Dewangan N, Wai M H, Kawi S. Catal. Sci. Technol., 2018, 8: 2763.

[29]

Renda S, Ricca A, Palma V. Int. J. Hydrogen. Energ., 2021, 46: 12117.

[30]

Huang Z D, Bensch W, Lotnyk A, Kienle L, Fuentes S, Bocarando J, Alonso G, Ornelas C. J. Mol. Catal. A: Chem., 2010, 323: 45.

[31]

Mendoza-Nieto J A, Vera-Vallejo O, Escobar-Alarcón L, Solís-Casados D, Klimova T. Fuel, 2013, 110: 268.

[32]

Palcheva R, Spojakina A, Dimitrov L, Jiratova K. Micropor. Mesopor. Mat., 2009, 122: 128.

[33]

Sing K S W. Pure. Appl. Chem., 1985, 57: 603.

[34]

Wang X, Zhu L, Zhuo Y, Zhu Y, Wang S. ACS Sustain. Chem. Eng., 2019, 7: 14647.

[35]

Zheng M-Y, Wang A-Q, Ji N, Pang J-F, Wang X-D, Zhang T. ChemSusChem., 2010, 3: 63.

[36]

Zhang F, Lu B, Sun P. Int. J. Hydrogen Energ., 2020, 45: 16183.

[37]

Gayapan K, Sripinun S, Panpranot J, Praserthdam P, Assabumrungrat S. RSC Adv., 2018, 8: 11693.

[38]

Vrijburg W L, Garbarino G, Chen W, Parastaev A, Longo A, Pidko E A, Hensen E J M. J. Catal., 2020, 382: 358.

[39]

Zhang T, Liu Q. Int. J. Hydrogen. Energ., 2020, 45: 4417.

[40]

Xing S, Liu Y, Liu X, Li M, Fu J, Liu P, Lv P, Wang Z. Appl. Catal. B: Environ., 2020, 269: 118718.

[41]

Bigey C, Hilaire L, Maire G. J. Catal., 1999, 184: 406.

[42]

Le Z, Afanasiev P, Li D, Long X, Vrinat M. Catal. Today, 2008, 130: 24.

[43]

Shao M, Cui H, Guo S, Zhao L, Tan Y. RSC Adv., 201, 6: 61747.

[44]

Wu H C, Chang Y C, Wu J H, Lin J H, Lin I K, Chen C S. Catal. Sci. Technol., 2015, 5: 4154.

[45]

Sun J, Wang Y, Zou H, Guo X, Wang Z-J. J. Enregy. Chem., 2019, 29: 3.

[46]

Blackmond D G, Ko E I. J. Catal., 1985, 96: 210.

[47]

Agnelli M, Swaan H M, Marquez-Alvarez C, Martin G A, Mirodatos C. J. Catal., 1998, 175: 117.

[48]

Rodriguez J. Surf. Sci. Rep., 199, 24: 223.

[49]

Yang F, Liu D, Wang H, Liu X, Han J, Ge Q, Zhu X. J. Catal., 2017, 349: 84.

[50]

Yang F, Yao Y, Yan Z, Min H, Goodman D W. Appl. Surf. Sci., 2013, 283: 263.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/