Scalable and Robust Bio-inspired Organogel Coating by Spraying Method Towards Dynamic Anti-scaling

Ruhua Zang , Zijia Chen , Hui Yang , Yixuan Wang , Shutao Wang , Jingxin Meng

Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 127 -132.

PDF
Chemical Research in Chinese Universities ›› 2023, Vol. 39 ›› Issue (1) : 127 -132. DOI: 10.1007/s40242-022-2094-x
Article

Scalable and Robust Bio-inspired Organogel Coating by Spraying Method Towards Dynamic Anti-scaling

Author information +
History +
PDF

Abstract

Scaling usually causes serious problems in daily life and industrial production. Currently, developing passive anti-scaling coatings has shown promises to overcome this problem. In this work, we fabricated a scalable and robust bio-inspired organogel(BIO) coating, showing dynamic scale resistance in the oil/brine mixture. The oil layer of the BIO coating was utilized as a barrier to inhibit scale nucleation and reduce scale adhesion. The mechanical strength of the coating was optimized by regulating nanoparticle contents. Moreover, the universality of scale resistance was demonstrated by varying the types of nanoparticles, oils and scales. Compared with commercial pipeline materials, such as copper, this BIO coating significantly reduces scale deposition after 240-h scaling test(ca. 93% reduction). Therefore, this study designs scalable and robust organogel coatings for sustainable scale resistance, which may be used for practical application in oil production.

Keywords

Bio-inspired / Organogel / Barrier / Anti-scaling / Spraying method

Cite this article

Download citation ▾
Ruhua Zang, Zijia Chen, Hui Yang, Yixuan Wang, Shutao Wang, Jingxin Meng. Scalable and Robust Bio-inspired Organogel Coating by Spraying Method Towards Dynamic Anti-scaling. Chemical Research in Chinese Universities, 2023, 39(1): 127-132 DOI:10.1007/s40242-022-2094-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meng J, Wang S. Adv. Funct. Mater., 2020, 30: 1904796.

[2]

Olajire A A. J. Pet. Sci. Eng., 2015, 135: 723.

[3]

Wang Y, Meng J, Wang S. Langmuir, 2021, 37: 8639.

[4]

Chaussemier M, Pourmohtasham E, Gelus D, Pécoul N, Perrot H, Lédion J, Charpentier H C, Horner O. Desalination, 2015, 356: 47.

[5]

Mady M F, Kelland M A. Energy Fuels, 2017, 31: 5940.

[6]

Subramanyam S B, Azimi G, Varanasi K K. Adv. Mater. Interfaces, 2014, 1: 1300068.

[7]

Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interf. Sci., 2015, 444: 81.

[8]

Chapman S P, Hong J K, Waterhouse A, Neto C. Chem. Soc. Rev., 2020, 49: 3688.

[9]

Liu H, Zhang P, Liu M, Wang S, Jiang L. Adv. Mater., 2013, 25: 4477.

[10]

Urata C, Dunderdale G J, England M W, Hozumi A. J. Mater. Chem. A, 2015, 3: 12626.

[11]

Zeng L, Lin X, Li P, Liu F, Guo H, Li W. Prog. Org. Coat., 2021, 159: 106417.

[12]

Yaghoubi A, Ramazani A, Ghasemzadeh H. RSC Adv., 2021, 11: 39095.

[13]

Elzaabalawy A, Verberne P, Meguid S A. ACS Appl. Mater. Interfaces, 2019, 11: 42827.

[14]

Zhang J, Zhang L, Gong X. Langmuir, 2021, 37: 6042.

[15]

Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grintha A, Aizenberg J. Nature, 2011, 477: 443.

[16]

Zhang J, Chen B, Chen X, Hou X. Adv. Mater., 2021, 33: 2005664.

[17]

Chen W, Zhang P, Zang R, Fan J, Wang S, Wang B, Meng J. Adv. Mater., 2020, 32: 1907413.

[18]

Fletcher N H. J. Chem. Phys., 1958, 29: 572.

[19]

Masoudi A, Irajizad P, Farokhnia N, Kashyap V, Ghasemi H. ACS Appl. Mater. Interfaces, 2017, 9: 210.

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/