Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate

Yuncheng Du , Xuchen Zheng , Yurui Xue , Yuliang Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1380 -1386.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1380 -1386. DOI: 10.1007/s40242-022-2091-0
Article

Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate

Author information +
History +
PDF

Abstract

Electrocatalytic CO2 reduction is great promising in alleviating the excessive CO2 emission and the conversion to valuable productions. Herein we report the in-situ controlled growth of Bismuth nanoflower/graphdiyne heterostructures(Bi/GDY) for efficient CO2 conversion toward formate. Based on GDY, the obtained electrocatalyst exhibits a partial current density of 19.2 mA/cm2 and high reaction selectivity towards formate with a high Faradic efficiency of 91.7% at −1.03 V vs. RHE, and an energy efficiency of 58.8%. The high formate yield rates could be maintained at around 300 µ.mol/(cm2·h) over a wide potential range. Detailed characterizations show that the unique interface structures between GDY and Bi can enhance the charge transfer ability, increase the number of active sites, and improve the long-term stability, and finally reach high-performance electrocatalytic conversion of CO2 to formate.

Keywords

Graphdiyne(GDY) / Heterostructure / CO2 reduction reaction(CO2RR) / Formate

Cite this article

Download citation ▾
Yuncheng Du, Xuchen Zheng, Yurui Xue, Yuliang Li. Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. Chemical Research in Chinese Universities, 2022, 38(6): 1380-1386 DOI:10.1007/s40242-022-2091-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Birdja Y Y, Pérez-Gallent E, Figueiredo M C, Göttle A J, Calle-Vallejo F, Koper M T M. Nat. Energy., 2019, 4: 732.

[2]

Ross M B, De Luna P, Li Y, Dinh C T, Kim D, Yang P, Sargent E H. Nat. Catal., 2019, 2: 648.

[3]

Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Sci. Adv., 2020, 6: 3111.

[4]

Tan X, Yu C, Ren Y, Cui S, Li W, Qiu J. Energy Environ. Sci., 2021, 14: 765.

[5]

Scofield M E, Koenigsmann C, Wang L, Liu H, Wong S S. Energy Environ. Sci., 2015, 8: 350.

[6]

Mori K, Futamura Y, Masuda S, Kobayashi H, Yamashita H. Nat. Commun., 2019, 10: 4094.

[7]

Nitopi S, Bertheussen E, Scott S B, Liu X, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Chem. Rev., 2019, 119: 7610.

[8]

Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A. Science, 201, 353: 467.

[9]

Han N, Ding P, He L, Li Y, Li Y. Adv. Energy Mater., 2020, 10: 1902338.

[10]

Pavesi D, Van De Poll R C J, Krasovic J L, Figueiredo M, Gruter G J M, Koper M T M, Schouten K J P. ACS Sustain. Chem. Eng., 2020, 8: 15603.

[11]

Lee C H, Kanan M W. ACS Catal., 2015, 5: 465.

[12]

Huang J, Guo X, Huang X, Wang L. Electrochim. Acta, 2019, 325: 134923.

[13]

Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K. Nat. Mater., 200, 5: 909.

[14]

Fan K, Jia Y, Ji Y, Kuang P, Zhu B, Liu X, Yu J. ACS Catal., 2020, 10: 358.

[15]

Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y. Nat. Commun., 2018, 9: 1320.

[16]

Gong Q, Ding P, Xu M, Zhu X, Wang M, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z, Li Y, Zhou W, Li Y. Nat. Commun., 2019, 10: 2807.

[17]

Li F, Chen L, Knowles G P, MacFarlane D R, Zhang J. Angew. Chemie. Int. Ed., 2017, 129: 520.

[18]

Ahn S, Klyukin K, Wakeham R J, Rudd J A, Lewis A R, Alexander S, Carla F, Alexandrov V, Andreoli E. ACS Catal., 2018, 8: 4132.

[19]

Rahaman M, Dutta A, Zanetti A, Broekmann P. ACS Catal., 2017, 7: 7946.

[20]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[21]

Zhao Y, Wan J, Yao H, Zhang L, Lin K, Wang L, Yang N, Liu D, Song L, Zhu J, Gu L, Liu L, Zhao H, Li Y, Wang D. Nat. Chem., 2018, 10: 924.

[22]

Li J, Gao X, Zhu L, Ghazzal M, Zhang J, Tung C, Wu L. Energy Environ. Sci., 2020, 13: 1326.

[23]

Tang H, Hessel C, Wang J, Yang N, Yu R, Zhao H, Wang D. Chem. Soc. Rev., 2014, 43: 4281.

[24]

Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Angew. Chem. Int. Ed., 2020, 59: 13021.

[25]

Xue Y, Hui L, Yu H, Liu Y, Fang Y, Huang B, Zhao Y, Li Z, Li Y. Nat. Commun., 2019, 10: 2281.

[26]

Yu H, Xue Y, Hui L, Zhang C, Li Y, Zuo Z, Zhao Y, Li Z, Li Y. Adv. Mater., 2018, 30: 1707082.

[27]

Du Y, Xue Y, Zhang C, Liu Y, Fang Y, Xing C, He F, Li Y. Adv. Energy Mater., 2021, 11: 2100234.

[28]

Zhao Y, Yang N, Yu R, Zhang Y, Zhang J, Li Y, Wang D. Energy Chem., 2020, 2: 100041.

[29]

Liu B, Xu L, Zhao Y, Du J, Yang N, Wang D. J. Mater. Chem. A, 2021, 9: 19298.

[30]

Gao Y, Xue Y, Liu T, Liu Y, Zhang C, Xing C, He F, Li Y. Adv. Sci., 2021 2102777.

[31]

Liu Y, Xue Y, Hui L, Yu H, Fang Y, He F, Li Y. Nano Energy, 2021, 89: 2104706.

[32]

Liu Y, Xue Y, Yu H, Hui L, Huang B, Li Y. Adv. Funct. Mater., 2021, 31: 200112.

[33]

Hui L, Xue Y, Xing C, Liu Y, Du Y, Fang Y, Yu H, Zhang C, He F, Li Y. Nano Energy, 2022, 95: 106984.

[34]

Wang Z, Zheng Z, Xue Y, He F, Li Y. Adv. Energy. Mater., 2021, 11: 2101138.

[35]

Zhao Y, Tang H, Yang N, Wang D. Adv. Sci., 2018, 5: 1800959.

[36]

Hui L, Zhang X, Xue Y, Chen X, Fang Y, Xing C, Liu Y, Zheng X, Du Y, Zhang C, He F, Li Y. J. Am. Chem. Soc., 2022, 144: 1921.

[37]

Zheng Z, Qi L, Xue Y, Li Y. Nano Today, 2022, 43: 101431.

[38]

Li J, Yi Y, Zuo X, Hu B, Xiao Z, Lian R, Kong Y, Tong L, Shao R, Sun J, Zhang J. ACS Nano, 2022, 16: 363.

[39]

Gao Y, Qi L, He F, Xue Y, Li Y. Adv. Sci., 2022 2104706.

[40]

Zhao Y, Wan J, Yang N, Yu R, Wang D. Mater. Chem. Front., 2021, 5: 7987.

[41]

Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Nat. Commun., 2018, 9: 1460.

[42]

Gao Y, Xue Y, Li Y. Sci. Sin. Chim., 2022, 52: 321.

[43]

Shen H, Li Y, Li Y. Aggregate, 2020, 1: 57.

[44]

Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. J. Am. Chem. Soc., 2019, 141: 10677.

[45]

Zhang D, Zheng X, Qi L, Xue Y, He F, Li Y. Adv. Funct. Mater., 2022 211501.

[46]

Rong X, Lu X, Lu T. Chem. Res. Chinese Universities, 2021, 37(6): 1296.

[47]

Ren H, Shao H, Zhang L, Guo D, Jin Q, Yu R, Wang L, Li Y, Wang Y, Zhao H, Wang D. Adv. Energy Mater., 2015, 5: 1500296.

[48]

Liu C, Zhang C, Lu T. Mater. Chem. Front., 2021, 5: 6052.

[49]

Qi Q, Xu L, Du J, Yang N, Wang D. Chem. Res. Chinese Universities, 2021, 37(6): 1158.

[50]

Gu H, Zhong L, Shi G, Li J, Yu K, Li J, Zhang S, Zhu C, Chen S, Yang C, Kong Y, Chen C, Li S, Zhang J, Zhang L. J. Am. Chem. Soc., 2021, 143: 8679.

[51]

Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z. J. Am. Chem. Soc., 2015, 137: 7596.

[52]

Zhu D D, Liu J L, Qiao S Z. Adv. Mater., 201, 28: 3423.

[53]

Fu L, Zhou J, Zhou L, Yang J, Liu Z, Wu K, Zhao H, Wang J, Wu K. Chem. Eng. J., 2021, 418: 129422.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/