Aptamers as Recognition Elements for Electrochemical Detection of Exosomes

Kaili Chang , Peng Sun , Xin Dong , Chunnan Zhu , Xiaojun Liu , Dongyun Zheng , Chao Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 879 -885.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 879 -885. DOI: 10.1007/s40242-022-2088-8
Review

Aptamers as Recognition Elements for Electrochemical Detection of Exosomes

Author information +
History +
PDF

Abstract

Exosome analysis is emerging as an attractive noninvasive approach for disease diagnosis and treatment monitoring in the field of liquid biopsy. Aptamer is considered as a promising molecular probe for exosomes detection because of the high binding affinity, remarkable specificity, and low cost. Recently, many approaches have been developed to further improve the performance of electrochemical aptamer based(E-AB) sensors with a lower limit of detection. In this review, we focus on the development of using aptamer as a specific recognition element for exosomes detection in electrochemical sensors. We first introduce recent advances in evolving aptamers against exosomes. Then, we review methods of immobilization aptamers on electrode surfaces, followed by a summary of the main strategies of signal amplification. Finally, we present the insights of the challenges and future directions of E-AB sensors for exosomes analysis.

Keywords

Aptamer / Exosome / Biosensor / Diagnosis / Biomolecular recognition

Cite this article

Download citation ▾
Kaili Chang, Peng Sun, Xin Dong, Chunnan Zhu, Xiaojun Liu, Dongyun Zheng, Chao Liu. Aptamers as Recognition Elements for Electrochemical Detection of Exosomes. Chemical Research in Chinese Universities, 2022, 38(4): 879-885 DOI:10.1007/s40242-022-2088-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PegtelD M, GouldS JAnnu. Rev. Biochem., 2019, 88: 487.

[2]

TheryC, ZitvogelL, AmigorenaSNat. Rev. Immunol., 2002, 2: 569.

[3]

KalluriR, LeBleuV SScience, 2020, 367: eaau6977.

[4]

VlassovA V, MagdalenoS, SetterquistR, ConradRBiochim. Biophys. Acta, Gen. Subj., 2012, 1820: 940.

[5]

WuL, WangY, XuX, LiuY, LinB, ZhangM, ZhangJ, WanS, YangC, TanWChem. Rev., 2021, 121: 12035.

[6]

ChengN, DuD, WangX, LiuD, XuW, LuoY, LinYTrends Biotechnol., 2019, 37: 1236.

[7]

DongZ, TangC, ZhangZ, ZhouW, ZhaoR, WangL, XuJ, WuY, WuJ, ZhangX, XuL, ZhaoL, FangXACS Appl. Bio Mater., 2020, 3: 2560.

[8]

WangJ, HuangX, XieJ, HanY, HuangY, ZhangHClin. Chim. Acta, 2021, 518: 142.

[9]

MinL, WangB, BaoH, LiX, ZhaoL, MengJ, WangSAdv. Sci., 2021, 8: e2102789.

[10]

ShaoH L, ImH, CastroC M, BreakefieldX, WeisslederR, LeeH HChem. Rev., 2018, 118: 1917.

[11]

ZhangP, ZhouX, HeM, ShangY, TetlowA L, GodwinA K, ZengYNat. Biomed. Eng., 2019, 3: 438.

[12]

ImH, ShaoH, ParkY I, PetersonV M, CastroC M, WeisslederR, LeeHNat. Biotechnol., 2014, 32: 490.

[13]

Bagheri HashkavayiA, ChaB S, LeeE S, KimS, ParkK SAnal. Chem., 2020, 92: 12733.

[14]

Abd-EllatiefR, Abd-EllatiefM RDiagnostics, 2021, 11: 104.

[15]

RamadanS, LoboR, ZhangY, XuL, ShaforostO, Kwong Hong TsangD, FengJ, YinT, QiaoM, RajeshirkeA, JiaoL R, PetrovP K, DunlopI E, TitiriciM M, KleinNACS Appl. Mater. Interfaces, 2021, 13: 7854.

[16]

GajdosovaV, LorencovaL, KasakP, TkacJSensors, 2020, 20: 4022.

[17]

XuL, ShoaieN, JahanpeymaF, ZhaoJ, AzimzadehM, Al JamalK TBiosens. Bioelectron., 2020, 161: 112222.

[18]

ZhuC, YangG, LiH, DuD, LinYAnal. Chem., 2015, 87: 230.

[19]

QinX, SuY, TanJ, YuanQChem. Res. Chinese Universities, 2020, 362164.

[20]

WuL, WangY, ZhuL, LiuY, WangT, LiuD, SongY, YangCACS Appl. Bio Mater., 2020, 3: 2743.

[21]

OzturkM, Nilsen-HamiltonM, IlguMPharmaceuticals, 2021, 14: 1260.

[22]

LinM, ZhangJ, WanH, YanC, XiaFACS Appl. Mater. Interfaces, 2021, 13: 9369.

[23]

HasegawaH, SavoryN, AbeK, IkebukuroKMolecules, 2016, 21: 421.

[24]

NiS, ZhuoZ, PanY, YuY, LiF, LiuJ, WangL, WuX, LiD, WanY, ZhangL, YangZ, ZhangB T, LuA, ZhangGACS Appl. Mater. Interfaces, 2021, 13: 9500.

[25]

ZhuoZ, YuY, WangM, LiJ, ZhangZ, LiuJ, WuX, LuA, ZhangG, ZhangBInt. J. Mol. Sci., 2017, 18: 1.

[26]

LiL, XuS J, YanH, LiX W, YazdH S, LiX, HuangT, CuiC, JiangJ H, TanW HAngew. Chem. Int. Ed., 2021, 60: 2221.

[27]

ChengC, ChenY H, LennoxK A, BehlkeM A, DavidsonB LMol. Ther. Nucleic Acids, 2013, 2: e67.

[28]

GuoZ K, LiuY, HeN Y, DengY, JinLChin. Chem. Lett., 2021, 32: 40.

[29]

AndreuZ, Yanez-MoMFront. Immunol., 2014, 5: 442.

[30]

LotvallJ, HillA F, HochbergF, BuzasE I, Di VizioD, GardinerC, GhoY S, KurochkinI V, MathivananS, QuesenberryP, SahooS, TaharaH, WaubenM H, WitwerK W, TheryCJ. Extracell. Vesicles, 2014, 3: 26913.

[31]

YiK, RongY, HuangL, TangX, ZhangQ, WangW, WuJ, WangFACS Sens, 2021, 6: 1418.

[32]

EspositoC L, QuintavalleC, IngenitoF, RotoliD, RoscignoG, NuzzoS, ThomasR, CatuognoS, de FranciscisV, CondorelliGMol. Ther. Nucleic Acids, 2021, 23: 982.

[33]

LiuC, JiangW, TianX, YangP, XiaoL, LiJ, QiuL, TuH, TanWAnal. Chem., 2019, 91: 6675.

[34]

PfeifferF, TolleF, RosenthalM, BrandleG M, EwersJ, MayerGNat. Protoc., 2018, 13: 1153.

[35]

RahmanM M, LiX B, LopaN S, AhnS J, LeeJ JSensors, 2015, 15: 3801.

[36]

PividoriM I, MerkociA, AlegretSBiosens. Bioelectron., 2000, 15: 291.

[37]

OberhausF V, FrenseD, BeckmannDBiosensors, 2020, 10: 45.

[38]

JosephsE A, YeTJ. Am. Chem. Soc., 2012, 134: 10021.

[39]

HerneT M, TarlovM JJ. Am. Chem. Soc., 1997, 119: 8916.

[40]

ZhouQ, RahimianA, SonK, ShinD S, PatelT, RevzinAMethods, 2016, 97: 88.

[41]

GrabowskaI, SharmaN, VasilescuA, IancuM, BadeaG, BoukherroubR, OgaleS, SzuneritsSACS Omega, 2018, 3: 12010.

[42]

WangQ, VasilescuA, WangQ, CoffinierY, LiM S, BoukherroubR, SzuneritsSACS Appl. Mater. Interfaces, 2017, 9: 12823.

[43]

WangS, ZhangL, WanS, CansizS, CuiC, LiuY, CaiR, HongC, TengI T, ShiM, WuY, DongY, TanWACS Nano, 2017, 11: 3943.

[44]

PeiH, LiF, WanY, WeiM, LiuH, SuY, ChenN, HuangQ, FanCJ. Am. Chem. Soc., 2012, 134: 11876.

[45]

LiuY, CanouraJ, AlkhamisO, XiaoYACS Appl. Mater. Interfaces, 2021, 13: 9491.

[46]

YangF, ZuoX L, FanC H, ZhangX ENatl. Sci.Rev., 2018, 5: 740.

[47]

HuangR, HeL, XiaY, XuH, LiuC, XieH, WangS, PengL, LiuY, LiuY, HeN, LiZSmall, 2019, 15: 1

[48]

XuH Y, LiaoC, ZuoP, LiuZ W, YeB CAnal. Chem., 2018, 90: 13451.

[49]

YinX, HouT, HuangB, YangL, LiFChem. Commun., 2019, 55: 13705.

[50]

YangY B, YangX D, YangY J, YuanQCarbon, 2018, 129: 380.

[51]

ZhangH, WangZ, ZhangQ, WangF, LiuYBiosens. Bioelectron., 2019, 124/125: 184.

[52]

ZhangH X, WangZ H, WangF, ZhangY M, WangH Y, LiuYAnal. Chem., 2020, 92: 5546.

[53]

ZhouY G, MohamadiR M, PoudinehM, KermanshahL, AhmedS, SafaeiT S, StojcicJ, NamR K, SargentE H, KelleyS OSmall, 2016, 12: 727.

[54]

LiuX, GaoX, YangL, ZhaoY, LiFAnal. Chem., 2021, 93: 11792.

[55]

ZhengD, LiuX, ZhuS, CaoH, ChenY, HuSMicrochim. Acta, 2015, 182: 2403.

[56]

WuY, LiuC, LiuX, ZhuC, DangX, HuS, ZhengDAnal. Lett., 2021, 54: 2537.

[57]

JingL, XieC, LiQ, YangM, LiS, LiH, XiaFAnal. Chem., 2022, 94: 269.

[58]

DirksR M, PierceN AProc. Natl. Acad. Sci. USA., 2004, 101: 15275.

[59]

HeF, LiuH, GuoX, YinB C, YeB CAnal. Chem., 2017, 89: 12968.

[60]

YangL, YinX, AnB, LiFAnal. Chem., 2021, 93: 1709.

[61]

AnY, JinT, ZhuY, ZhangF, HePBiosens. Bioelectron., 2019, 142: 111503.

[62]

DongH, ChenH, JiangJ, ZhangH, CaiC, ShenQAnal. Chem., 2018, 90: 4507.

[63]

ZhaoL, SunR, HeP, ZhangXAnal. Chem., 2019, 91: 14773.

[64]

ChaiH, MiaoPAnal. Chem., 2019, 91: 4953.

[65]

LuoL, WangL, ZengL, WangY, WengY, LiaoY, ChenT, XiaY, ZhangJ, ChenJTalanta, 2020, 207: 120298.

[66]

RoueinfarM, TempletonH N, ShengJ A, HongK LMolecules, 2022, 27: 1114.

[67]

FengW, NewbiggingA M, TaoJ, CaoY, PengH, LeC, WuJ, PangB, LiJ, TyrrellD L, ZhangH, LeX CChem. Sci., 2021, 12: 4683.

[68]

ZhaoX, ZhangW, QiuX, MeiQ, LuoY, FuWAnal. Bioanal. Chem., 2020, 412: 601.

[69]

XingS, LuZ, HuangQ, LiH, WangY, LaiY, HeY, DengM, LiuWTheranostics, 2020, 10: 10262.

[70]

HanC, LiW, LiQ, XingW, LuoH, JiH, FangX, LuoZ, ZhangLBiosens. Bioelectron., 2022, 200: 113922.

[71]

RamirezM I, AmorimM G, GadelhaC, MilicI, WelshJ A, FreitasV M, NawazM, AkbarN, CouchY, MakinL, CoakleyG, NunesD N, CarterD, PalmisanoG, Dias-NetoENanoscale, 2018, 10: 881.

[72]

OuerdaneY, HassaballahM Y, NagahA, IbrahimT M, MohamedH A H, El-BazA, AttiaM Spharmaceuticals, 2022, 15: 1.

[73]

LiY K, DengJ Q, HanZ W, LiuC, TianF, XuR, HanD, ZhangS H, SunJ SJ. Am. Chem. Soc., 2021, 143: 1290.

[74]

SuJ, ChenS, DouY, ZhaoZ, JiaX, DingX, SongSAnal. Chem., 2022, 94: 3235.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/