Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation

Sisi Chen , Lei Zhang , Quan Yuan , Jie Tan

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 847 -855.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 847 -855. DOI: 10.1007/s40242-022-2087-9
Review

Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation

Author information +
History +
PDF

Abstract

The interaction between biomolecules with their target ligands plays a great role in regulating biological functions. Aptamers are short oligonucleotide sequences that can specifically recognize target biomolecules via structural complementarity and thus regulate related biological functions. In the past ten years, aptamers have made great progress in target biomolecule recognition, becoming a powerful tool to regulate biological functions. At present, there are many reviews on aptamers applied in biomolecular recognition, but few reviews pay attention to aptamer-based regulation of biological functions. Here, we summarize the approaches to enhancing aptamer affinity and the advancements of aptamers in regulating enzymatic activity, cellular immunity and cellular behaviors. Furthermore, this review discusses the challenges and future perspectives of aptamers in target recognition and biological functions regulation, aiming to provide some promising ideas for future regulation of biomolecular functions in a complex biological environment.

Keywords

Aptamer / Molecular recognition / Biological process regulation / Biological Sciences / Biochemistry and Cell Biology

Cite this article

Download citation ▾
Sisi Chen, Lei Zhang, Quan Yuan, Jie Tan. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation. Chemical Research in Chinese Universities, 2022, 38(4): 847-855 DOI:10.1007/s40242-022-2087-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TanJ, ZhaoM M, WangJ, LiZ H, LiangL, ZhangL, YuanQ, TanWAngew. Chem. Int. Ed., 2019, 58: 1621.

[2]

MaoX, LiQ, ZuoX, FanCACS Appl. Bio. Mater., 2020, 3: 2674.

[3]

AlexanderH, GunterMJ. Am. Chem. Soc., 2005, 127: 822.

[4]

ChoR, HuangM, CampbellM, DongH, SteinmetzH, SapinosoH, HamptonG, ElledgeS, DavisR, LockhartDNat. Genet., 2001, 27: 48.

[5]

KarpPBioinformatics, 2000, 16: 269.

[6]

BatistaI A A, HelgueroL ASignal Transduct. Target Ther., 2018, 3: 19.

[7]

LiJ, XunK, PeiK, LiuX, PengX, DuY, QiuL, TanWJ. Am. Chem. Soc., 2019, 141: 18013.

[8]

HuM, HanQ, LyuL, TongY, DongS, LohZ, XingBChem Commun, 2020, 56: 10231.

[9]

BartonG M, KaganJ CNat. Rev. Immunol., 2009, 9: 535.

[10]

CaseL B, DitlevJ A, RosenM KAnnu. Rev. Biophys, 2019, 48: 465.

[11]

MogakiR, HashimP K, OkuroK, AidaTChem. Soc. Rev., 2017, 46: 6480.

[12]

XingY, YanJ, NiuYActa Pharm. Sin. B, 2020, 10: 197.

[13]

DunnM, JimenezR, ChaputJNat. Rev. Chem., 2017, 1: 76.

[14]

TanW, DonovanM J, JiangJChem. Rev., 2013, 113: 2842.

[15]

BanerjeeJ, Nilsen-HamiltonMJ. Mol. Med., 2013, 91: 1333.

[16]

MichaelF, GunterM, MichaelBAcc. Chem. Res., 2000, 33: 591.

[17]

PanigajM, JohnsonM B, KeW, McMillanJ, GoncharovaE A, ChandlerM, AfoninK AACS Nano, 2019, 13: 12301.

[18]

RangelA E, HaririA A, EisensteinM, SohH TAdv. Mater., 2020, 32: e2003704.

[19]

HasegawaH, SavoryN, AbeK, IkebukuroKMolecules, 2016, 21: 421.

[20]

NiS, YaoH, WangL, LuJ, JiangF, LuA, ZhangGInt. J. Mol. Sci., 2017, 18: 1683.

[21]

SunH, ZuYMolecules, 2015, 20: 11959.

[22]

QiS, DuanN, KhanI M, DongX, ZhangY, WuS, WangZBiotechnol. Adv., 2022, 55: 107902.

[23]

LiL, JiangY, CuiC, YangY, ZhangP, StewartK, PanX, LiX, YangL, QiuL, TanWJ. Am. Chem. Soc., 2018, 140: 13335.

[24]

JiaW, XieD, LiF, WuX, WangR, YangL, LiuL, YinW, ChangSAnal. Chim. Acta., 2021, 1183: 338976.

[25]

HermannT, PatelDScience, 2000, 287: 820.

[26]

ChenY, WangZ, LiuS, ZhaoGJ. Hazard Mater., 2021, 412: 125174.

[27]

TomilinF N, MoryachkovR, ShchugorevaI, ZabludaV N, PetersG, PlatunovM, SpiridonovaV, MelnichukA, AtrokhovaA, ZamayS S, OvchinnikovS G, ZamayG S, SokolovA, ZamayT N, BerezovskiM V, KichkailoA SAnal. Bioanal. Chem., 2019, 411: 6723.

[28]

JiD, LyuK, ZhaoH, KwokC KNucleic Acids Res., 2021, 49: 7280.

[29]

MaoY, GuJ, ChangD, WangL, YaoL, MaQ, LuoZ, QuH, LiY, ZhengLNucleic Acids Res., 2020, 48: 10680.

[30]

LiX, YangY, ZhaoH, ZhuT, YangZ, XuH, FuY, LinF, PanX, LiL, CuiC, HongM, YangL, WangK K, TanWJ. Am. Chem. Soc., 2020, 142: 3862.

[31]

HeX Q, GuoL, HeJ L, XuH, XieJ WAnal. Chem., 2017, 89: 6559.

[32]

LiuY, LeC, TyrrellD L, LeX C, LiX FAnal. Chem., 2020, 92: 6495.

[33]

ZhaoL, QiX, YanX, HuangY, LiangX, ZhangL, WangS, TanWJ. Am. Chem. Soc., 2019, 141: 17493.

[34]

Li L., Xu S., Peng X., Ji Y., Yan H., Cui C., Li X., Pan X., Yang L., Qiu L., Jiang J., Tan W., Natl. Sci. Rev., 2021, 8, nwaa202

[35]

LinM, ZhangJ, WanH, YanC, XiaFACS Appl. Mater. Interfaces, 2021, 13: 9369.

[36]

WuL, WangY, XuX, LiuY, LinB, ZhangM, ZhangJ, WanS, YangC, TanWChem. Rev., 2021, 121: 12035.

[37]

YeldellS B, SeitzOChem. Soc. Rev., 2020, 49: 6848.

[38]

ZhangH, YuX, LiuY, LinB, JiangM, SongJ, DiW, ZhuZ, YangCAnal. Chem., 2021, 93: 7235.

[39]

YangY, YinY, LiX, WangS, DongYSensors and Actuators B: Chemical, 2020, 319: 128250.

[40]

KuaiH, ZhaoZ, MoL, LiuH, HuX, FuT, ZhangX, TanWJ. Am. Chem. Soc., 2017, 139: 9128.

[41]

RichardsE, LiS, ChenN, BattigM, WangYBiomacromolecules, 2014, 15: 4561.

[42]

SongY, ShiY, HuangM, WangW, WangY, ChengJ, LeiZ, ZhuZ, YangCAngew. Chem. Int. Ed., 2019, 58: 2236.

[43]

SunM, LiuS, SongT, ChenF, ZhangJ, HuangJ, WanS, LuY, ChenH, TanW, SongY, YangCJ. Am. Chem. Soc., 2021, 143: 21541.

[44]

TianJ, ChenS, WangX, LiJChem. Res. Chinese Universities, 2020, 362151.

[45]

QinX Y, SuY, TanJ, YuanQChem. Res. Chinese Universities, 2020, 362164.

[46]

RohloffJ C, GelinasA D, JarvisT C, OchsnerU A, SchneiderD J, GoldL, JanjicNMol. Ther. Nucleic Acids, 2014, 3: e201.

[47]

RothlisbergerP, HollensteinMAdv. Drug Deliv. Rev., 2018, 134: 3.

[48]

AbeydeeraN D, EgliM, CoxN, MercierK, CondeJ N, PallanP S, MizuriniD M, SierantM, HibtiF E, HassellT, WangT, LiuF W, LiuH M, MartinezC, SoodA K, LybrandT P, FrydmanC, MonteiroR Q, GomerR H, NawrotB, YangXNucleic Acids Res., 2016, 44: 8052.

[49]

PagratisN C, BellC, ChangY F, JenningsS, FitzwaterT, JellinekD, DangCNat. Biotechnol., 1997, 15: 68.

[50]

RuckmanJ, GreenL S, BeesonJ, WaughS, GilletteW L, HenningerD D, Claesson-WelshL, JanjićNJ. Biol. Chem., 1998, 273: 20556.

[51]

GruenkeP R, AlamK K, SinghK, BurkeD HRNA, 2020, 26: 1667.

[52]

KhvorovaA, WattsJ KNat. Biotechnol., 2017, 35: 238.

[53]

WangK, TangZ, YangC J, KimY, FangX, LiW, WuY, MedleyC D, CaoZ, LiJ, ColonP, LinH, TanWAngew. Chem. Int. Ed., 2009, 48: 856.

[54]

KimotoM, YamashigeR, MatsunagaK, YokoyamaS, HiraoINat. Biotechnol., 2013, 31: 453.

[55]

MatsunagaK I, KimotoM, LimV W, TanH P, WongY Q, SunW, VasooS, LeoY S, HiraoINucleic Acids Res., 2021, 49: 11407.

[56]

GawandeB N, RohloffJ C, CarterJ D, CarlowitzI, ZhangC, SchneiderD J, JanjicNProc. Natl. Acad. Sci. USA, 2017, 114: 2898.

[57]

RebekJAngew. Chem. Int. Ed., 1990, 29: 245.

[58]

AhmadM, HelmsV, KalininaO V, LengauerTJ. Phys. Chem. B, 2016, 120: 2138.

[59]

DongH, LiuL, WangJ, FanJ, WangH H, NieZACS Appl. Bio. Mater., 2020, 3: 2796.

[60]

WuJ, NiuS, TanM, HuangC, LiM, SongY, WangQ, ChenJ, ShiS, LanP, LeiMCell, 2018, 175: 1393.

[61]

OnagiJ, KomatsuT, IchihashiY, KurikiY, KamiyaM, TeraiT, UenoT, HanaokaK, MatsuzakiH, HataK, WatanabeT, NaganoT, UranoYJ. Am. Chem. Soc., 2017, 139: 3465.

[62]

ChenJ J, GaoH J, LiZ H, LiY X, YuanQChin. Chem. Lett., 2020, 31: 1398.

[63]

WangJ, WeiY, HuX, FangY Y, LiX, LiuJ, WangS, YuanQJ. Am. Chem. Soc., 2015, 137: 10576.

[64]

ThompsonR E, LiuX, Ripoll-RozadaJ, Alonso-GarciaN, ParkerB L, PereiraP J B, PayneR JNat. Chem., 2017, 9: 909.

[65]

LaneD A, PhilippouH, HuntingtonJ ABlood, 2005, 106: 2605.

[66]

PigoniM, WanngrenJ, KuhnP H, MunroK M, GunnersenJ M, TakeshimaH, FeederleR, VoytyukI, De StrooperB, LevasseurM D, HrupkaB J, MullerS A, LichtenthalerS FMol. Neurodegener., 2016, 11: 67.

[67]

KennedyM E, StamfordA W, ChenX, CoxK, CummingJ N, DockendorfM F, EganM, EreshefskyL, HodgsonR A, HydeL A, JheeS, KleijnH J, KuvelkarR, LiW, MattsonB A, MeiH, PalczaJ, ScottJ D, TanenM, TroyerM D, TsengJ L, StoneJ A, ParkerE M, FormanM SSci. Transl. Med., 2016, 8: 363ra150.

[68]

LiangH, ShiY, KouZ, PengY, ChenW, LiX, LiS, WangY, WangF, ZhangXPLoS One, 2015, 10: e0140733.

[69]

XiangJ, ZhangW, CaiX F, CaiM, YuZ H, YangF, ZhuW, LiX T, WuT, ZhangJ S, CaiD FMol. Ther. Nucleic Acids, 2019, 16: 302.

[70]

GasseC, ZaarourM, NoppenS, AbramovM, MarliereP, LiekensS, De StrooperB, HerdewijnPChembiochem, 2018, 19: 754.

[71]

ShraimA S, HunaitiA, AwidiA, AlshaerW, AbabnehN A, Abu-IrmailehB, OdehF, IsmailSJ. Med. Chem., 2020, 63: 2209.

[72]

TrenkerR, JuraNCurr. Opin. Cell Biol., 2020, 63: 174.

[73]

EguchiA, UekiA, HoshiyamaJ, KuwataK, ChikaokaY, KawamuraT, NagatoishiS, TsumotoK, UekiR, SandoSJACS Au, 2021, 1: 578.

[74]

ZhaoM, JiangJ, ZhaoM, ChangC, WuH, LuQClin. Rev. Allergy Immunol., 2021, 60: 68.

[75]

MoodyR, WilsonK, FlanaganK L, JaworowskiA, PlebanskiMInt. J. Mol. Sci., 2021, 22: 8965.

[76]

ScottE A, KarabinN B, AugsornworawatPAnnu. Rev. Biomed. Eng., 2017, 19: 57.

[77]

PastorF, BerraondoP, EtxeberriaI, FrederickJ, SahinU, GilboaE, MeleroINat. Rev. Drug Discov., 2018, 17: 751.

[78]

ZhangD, ZhengY, LinZ, LiuX, LiJ, YangH, TanWAngew. Chem. Int. Ed., 2020, 59: 12022.

[79]

LiX, LiZ, YuHChem. Commun., 2020, 56: 14653.

[80]

LvH Y, WangT F, PeiR JChina Biotechnology, 2019, 39: 55

[81]

YangY, XuJ, SunY, MoL, LiuB, PanX, LiuZ, TanWJ. Am. Chem. Soc., 2021, 143: 8391.

[82]

YangS, WenJ, LiH, XuL, LiuY, ZhaoN, ZengZ, QiJ, JiangW, HanW, ZuYSmall, 2019, 15: e1900903.

[83]

ShiP, WangX, DavisB, CoyneJ, DongC, ReynoldsJ, WangYAngew. Chem. Int. Ed., 2020, 59: 11892.

[84]

ChenW J, WuH T, LiC L, LinY K, FangZ X, LinW T, LiuJFront. Cell Dev. Biol., 2021, 9: 752426.

[85]

UekiR, UekiA, KandaN, SandoSAngew. Chem. Int. Ed., 2016, 55: 579.

[86]

AkiyamaM, UekiR, YanagawaM, AbeM, HiroshimaM, SakoY, SandoSAngew. Chem. Int. Ed., 2021, 60: 22745.

[87]

KohataA, UekiR, OkuroK, HashimP K, SandoS, AidaTJ. Am. Chem. Soc., 2021, 143: 13937.

[88]

WangL, LiangH, SunJ, LiuY, LiJ, LiJ, LiJ, YangHJ. Am. Chem. Soc., 2019, 141: 12673.

[89]

LeeY J, KimI S, ParkS A, KimY, LeeJ E, NohD Y, KimK T, RyuS H, SuhP GMol. Ther., 2013, 21: 1004.

[90]

LiuX, YanH, LiuY, ChangYSmall, 2011, 7: 1673.

[91]

QianS, ChangD, HeS, LiYAnal. Chim. Acta, 2022, 1196: 339511.

[92]

LiuL S, WangF, GeY, LoP KACS Appl. Mater. Interfaces, 2021, 13: 9329.

[93]

SunH G, ZhangJ S, WuJ B, ZuY L, ZhuXProg. Pharm. Sci., 2016, 40: 583

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/