Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors

Tianwei Tang , Yinghuan Liu , Ying Jiang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 866 -878.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 866 -878. DOI: 10.1007/s40242-022-2084-z
Review

Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors

Author information +
History +
PDF

Abstract

Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.

Keywords

Electrochemical biosensor / Aptamer / Biomolecular recognition / Biological system / Chemical Sciences / Analytical Chemistry / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Tianwei Tang, Yinghuan Liu, Ying Jiang. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chemical Research in Chinese Universities, 2022, 38(4): 866-878 DOI:10.1007/s40242-022-2084-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HulanickiA, GlabS, IngmanFPure Appl. Chem., 1991, 63: 1247.

[2]

JustinoC I L, DuarteA C, SantosT A P RTrends Analyt. Chem., 2016, 85: 36.

[3]

MatsudaM, TeraiKPathol. In., 2020, 70: 379

[4]

WangM X, LiL Y, ZhangL M, ZhaoJ G, JiangZ Q, WangW ZAnal. Chem., 2022, 94: 431.

[5]

KirschJ, SiltanenC, ZhouQ, RevzinA, SimonianAChem. Soc. Rev., 2013, 42: 8733.

[6]

SiontorouC G, GeorgopoulosK NTrends Environ. Anal. Chem., 2021, 32: e00146.

[7]

ZhuY, ZhangQ, LiX, PanH, WangJ T, ZhaoZ JSens. Actuators B Chem., 2019, 293: 53.

[8]

TuJ B, RodriguezR M T, WangM Q, GaoWAdv. Funct. Mater., 2020, 30: 1906713.

[9]

QiX, WangS Y, JiangY, LiuP P, LiQ C, HaoW, HanJ B, ZhouY X, HuangX, LiangPWater Res., 2021, 198: 117164.

[10]

KalimuthuP, KruseT, BernhardtP VElectrochim. Acta, 2021, 386: 138480.

[11]

RonkainenN J, HalsallH B, HeinemanW RChem. Soc. Rev., 2010, 39: 1747.

[12]

RamanathanK, DanielssonBBiosens. Bioelectron., 2001, 16: 417.

[13]

LeiZ L, GuoBAdv. Sci., 2022, 9: 2102924.

[14]

KauffmannJ M, GuilbaultG GMethods Biochem. Anal., 1992, 36: 63

[15]

TherriaultDNat. Nanotechnol., 2007, 2: 393.

[16]

TurnerA P FChem. Soc. Rev., 2013, 42: 3184.

[17]

MokhtarzadehA, Eivazzadeh KeihanR, PashazadehP, HejaziM, GharaatifarN, HasanzadehM, BaradaranB, de la GuardiaMTrends Analyt. Chem., 2017, 97: 445.

[18]

IndaM E, LuT KAnnu. Rev. Microbiol., 2020, 74: 337.

[19]

BollellaP, KatzESensors, 2020, 20: 3517.

[20]

KwonO S, SongH S, ParkT H, JangJChem. Rev., 2019, 119: 36.

[21]

ZhuC Z, YangG H, LiH, DuD, LinY HAnal. Chem., 2015, 87: 230.

[22]

SempionattoJ R, MontielV R V, VargasE, TeymourianH, WangJACS Sens., 2021, 6: 1745.

[23]

BaldoT A, de LimaL F, MendesL F, de AraujoW R, PaixaoT R L C, ColtroW K TACS Appl. Electron. Mater., 2021, 3: 68.

[24]

PanielN, BaudartJ, HayatA, BarthelmebsLMethods, 2013, 64: 229.

[25]

ZhouW, HuangP J J, DingJ, LiuJAnalyst, 2014, 139: 2627.

[26]

TohS Y, CitartanM, GopinathS C B, TangT HBiosens. Bioelectron., 2015, 64: 392.

[27]

LabibM, SargentE H, KelleyS OChem. Rev., 2016, 116: 9001.

[28]

MuzykaK, SaqibM, LiuZ, ZhangW, XuGBiosens. Bioelectron., 2017, 92: 241.

[29]

YangF, LiQ, WangL, ZhangG J, FanCACS Sens., 2018, 3: 903.

[30]

SameiyanE, BagheriE, RamezaniM, AlibolandiM, AbnousK, TaghdisiS MBiosens. Bioelectron., 2019, 143: 111662.

[31]

ZhangK, LiH Y, WangW J, CaoJ X, GanN, HanH YACS Sens., 2020, 5: 3721.

[32]

JiangZ W, ZhaoT T, LiC M, LiY F, HuangC ZACS Appl. Mater. Interfaces, 2021, 13: 49754.

[33]

AnJ E, KimK H, ParkS J, SeoS E, KimJ, HaS, BaeJ, KwonO SACS Sens., 2022, 7: 99.

[34]

EllingtonA D, SzostakJ WNature, 1990, 346: 818.

[35]

RobertsonD L, JoyceG FNature, 1990, 344: 467.

[36]

GoldLJ. Biol. Chem., 1995, 270: 13581.

[37]

TuerkC, GoldLScience, 1990, 249: 505.

[38]

SingerB S, ShtatlandT, BrownD, GoldLNucleic Acids Res., 1997, 25: 781.

[39]

GopinathS C BAnal. Bioanal. Chem., 2007, 387: 171.

[40]

KeefeA D, CloadS TCurr. Opin. Chem. Biol., 2008, 72: 448.

[41]

JayasenaS DClin. Chem., 1999, 45: 1628.

[42]

IlguM, Nilsen HamiltonMAnalyst, 2016, 141: 1551.

[43]

RothlisbergerP, HollensteinMAdv. Drug Del. Rev., 2018, 134: 3.

[44]

WuY, BelmonteI, SykesK S, XiaoY, WhiteR JAnal. Chem., 2019, 91: 15335.

[45]

KleinjungF, KlussmannS, ErdmannV A, SchellerF W, FursteJ P, BierF FAnal. Chem., 1998, 70: 328.

[46]

XiaoY, PiorekB D, PlaxcoK W, HeegerA JJ. Am. Chem. Soc., 2005, 127: 17990.

[47]

DuY, LiB L, WangE KAcc. Chem. Res., 2013, 46: 203.

[48]

ZhangY, LaiB S, JuhasMMolecules, 2019, 24: 941.

[49]

WangL, XuM, HanL, ZhouM, ZhuC Z, DongS JAnal. Chem., 2012, 84: 7301.

[50]

MaK, LiX, XuB, TianW JAnal. Chim. Acta, 2021, 1188: 338859.

[51]

NekrasovN, JaricS, KireevD, EmelianovA V, OrlovA V, GadjanskiI, NikitinP I, AkinwandeD, BobrinetskiyIBiosens. Bioelectron., 2022, 200: 113890.

[52]

ChaiS C, CaoX, XuF R, ZhaiL, QianH J, ChenQ, WuL X, LiH LACS Nano, 2019, 13: 7135.

[53]

WangY, GongC J, ZhuY, WangQ Q, GengL PElectrochim. Acta, 2021, 393: 139054.

[54]

RahmatiZ, RoushaniM, HosseiniHTalanta, 2022, 237: 122924.

[55]

HoriS, HerreraA, RossiJ J, ZhouJCancers, 2018, 10: 9.

[56]

OmerM, AndersenV L, NielsenJ S, WengelJ, KjemsJMol. Ther. Nucleic Acids, 2020, 22: 994.

[57]

ShigdarS, SchrandB, GiangrandeP H, de FranciscisVMol. Ther., 2021, 29: 2396.

[58]

ChenK, LiuB, YuB, ZhongW, LuY, ZhangJ N, LiaoJ, LiuJ, PuY, QiuL P, ZhangL Q, LiuH X, TanW HWiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9: e1438

[59]

FattalE, HillaireauH, IsmailS IAdv. Drug Del. Rev., 2018, 134: 1.

[60]

GunaratneR, KumarS, FrederiksenJ W, StayrookS, LohrmannJ L, PerryK, BompianiK M, ChabataC V, ThaljiN K, HoM D, ArepallyG, CamireR M, KrishnaswamyS, SullengerB ANat. Biotechnol., 2018, 36: 606.

[61]

GoochJ, DanielB, ParkinM, FrascioneNTrends Analyt. Chem., 2017, 94: 150.

[62]

AydindoganE, BalabanS, EvranS, CoskunolH, TimurSBiosensors, 2019, 9: 118.

[63]

SatohT, KourokiS, KitamuraY, IharaT, MatsumuraK, IwaseSAnal. Methods, 2020, 12: 2703.

[64]

DunnM R, JimenezR M, ChaputJ CNat. Rev. Chem., 2017, 1: 1.

[65]

KeefeA D, PaiS, EllingtonANat. Rev. Drug Discov., 2010, 9: 537.

[66]

WuL L, WangY D, XuX, LiuY L, LinB Q, ZhangM X, ZhangJ L, WanS, YangC Y, TanW HChem. Rev., 2021, 121: 12035.

[67]

ThevenotD R, TothK, DurstR A, WilsonG SAnal. Lett., 2001, 34: 635.

[68]

IkebukuroK, KiyoharaC, SodeKBiosens. Bioelectron., 2005, 20: 2168.

[69]

XueY F, JiW L, JiangY, YuP, MaoL QAngew. Chem. Int. Ed., 2021, 60: 23777.

[70]

JollyP, MiodekA, YangD K, ChenL C, LloydM D, EstrelaPACS Sens., 2016, 1: 1308.

[71]

WangG X, HanR, LiQ, HanY F, LuoX LAnal. Chem., 2020, 92: 7186.

[72]

SuS, MaJ F, XuY Q, PanH M, ZhuD, ChaoJ, WengL X, WangL HACS Appl. Mater. Interfaces, 2020, 12: 48133.

[73]

BangG S, ChoS, KimB GBiosens. Bioelectron., 2005, 21: 863.

[74]

OdehF, NsairatH, AlshaerW, IsmailM A, EsawiE, QaqishB, Al BawabA, IsmailS IMolecules, 2020, 25: 3.

[75]

FeigonJ, DieckmannT, SmithF WChem. Biol., 1996, 3: 611.

[76]

PiganeauN, SchroederRChem. Biol., 2003, 10: 103.

[77]

RuffK M, SnyderT M, LiuD RJ. Am. Chem. Soc., 2010, 132: 9453.

[78]

ShiH W, WuM S, DuY, XuJ J, ChenH YBiosens. Bioelectron., 2014, 55: 459.

[79]

YangS H, ZhangF F, WangZ H, LiangQ LBiosens. Bioelectron., 2018, 112: 186.

[80]

UpanJ, YoungvisesN, TuantranontA, KaruwanC, BanetP, AubertP H, JakmuneeJSci. Rep., 2021, 11: 1.

[81]

TaghdisiS M, DaneshN M, NameghiM A, RarnezaniM, AlibolandiM, AbnousKBiosens. Bioelectron., 2019, 133: 230.

[82]

ZhangX, LazenbyR A, WuY, WhiteR JAnal. Chem., 2019, 91: 11467.

[83]

TivonY, FalconeG, DeitersAAngew. Chem. Int. Ed., 2021, 60: 15899.

[84]

ZhangH F, LuoF, WangP L, GuoL H, QiuB, LinZ YBiosens. Bioelectron., 2019, 129: 36.

[85]

LiuX H, LuoL J, LiL B, DiZ X, ZhangJ Y, YouT YElectrochim. Acta, 2019, 319: 849.

[86]

AdachiT, NakamuraYMolecules, 2019, 24: 4229.

[87]

NiS J, ZhuoZ J, PanY F, YuY Y, LiF F, LiuJ, WangL YACS Appl. Mater. Interfaces, 2021, 13: 9500.

[88]

TaghdisiS M, DaneshN M, EmraniA S, RamezaniM, AbnousKBiosens. Bioelectron., 2015, 73: 245.

[89]

YangJ M, LiX L, JiangB Y, YuanR, XiangYAnal. Chem., 2020, 92: 7893.

[90]

MehennaouiS, PoorahongS, JimenezG C, SiajMSci. Rep., 2019, 9: 1.

[91]

ZengR J, SuL S, LuoZ B, ZhangL J, LuM H, TangD PAnal. Chim. Acta, 2018, 1038: 21.

[92]

MinunniM, TombelliS, GullottoA, LuziE, MasciniMBiosens. Bioelectron., 2004, 20: 1149.

[93]

ZamaniM, RobsonJ M, FanA, BonoM S, FurstA L, KlapperichC MACS Cent. Sci., 2021, 7: 963.

[94]

YuH, ChenZ, LiuY, AlkhamisO, SongZ, XiaoYAngew. Chem. Int. Ed., 2021, 60: 2993.

[95]

WangJ, ZhouH SAnal. Chem., 2008, 80: 7174.

[96]

HuangK J, LiuY J, ZhangJ Z, CaoJ T, LiuY MBiosens. Bioelectron., 2015, 67: 184.

[97]

TabriziM A, ShamsipurM, SaberR, SarkarS, SherkatkhamenehNElectrochim. Acta, 2017, 246: 1147.

[98]

QiangL, ZhangY, GuoX, GaoY K, HanY, SunJ, HanLRSC Adv., 2020, 10: 15293.

[99]

ZhangC Y, WangC W, XiaoR, TangL, HuangJ, WuD, LiuS W, WangY, ZhangD, WangS Q, ChenX MJ. Mater. Chem B, 2018, 6: 3751.

[100]

ChenM, WuD M, TuS H, YangC Y, ChenD J, XuYSci. Rep., 2021, 11: 3666.

[101]

VajhadinF, Mazloum ArdakaniM, ShahidiM, MoshtaghiounS M, Hagh-iralsadatF, EbadiA, AminiABiosens. Bioelectron., 2022, 195: 113626.

[102]

ChengS T, LiuH M, ZhangH, ChuG L, GuoY M, SunXSens. Actuators B Chem., 2020, 304: 127367.

[103]

MaleckaK, FerapontovaE EACS Appl. Mater. Interfaces, 2021, 13: 37979.

[104]

AzadbakhtA, RoushaniM, AbbasiA R, DerikvandZAnal. Biochem., 2016, 507: 47.

[105]

AzadbakhtA, RoushaniM, AbbasiA R, DerikvandZAnal. Biochem., 2016, 512: 58.

[106]

RaouafiA, SanchezA, RaouafiN, VillalongaRSens. Actuators B Chem., 2019, 297: 126762.

[107]

JiaF, DuanN, WuS J, DaiR T, WangZ P, LiX MMikrochim. Acta, 2016, 183: 337.

[108]

LiZ J, YinJ F, GaoC H, ShengL Y, MengAMikrochim. Acta, 2019, 186: 1.

[109]

LiJ J, SiY P, ParkY E, ChoiJ, JungS M, LeeJ E, LeeH YMikrochim. Acta, 2021, 188: 146.

[110]

SzymczykA, SoliwodzkaK, MoskalM, RozanowskiK, ZiolkowskiRSens. Actuators B: Chem., 2022, 354: 131086.

[111]

MaY B, LiuJ S, LiH DBiosens. Bioelectron., 2017, 92: 21.

[112]

DingS, MosherC, LeeX Y, DasS R, CargillA A, TangX, ChenB, McLamoreE S, GomesC, HostetterJ M, ClaussenJ CACS Sens., 2017, 2: 210.

[113]

XiaoQ, FengJ R, LiJ W, FengM M, HuangSAnalyst, 2018, 143: 4764.

[114]

MengX Z, GuH W, YiH C, HeY Q, ChenY, SunW YAnal. Chim. Acta, 2020, 1125: 1.

[115]

LiuX P, HuangB, MaoC J, ChenJ S, JinB KTalanta, 2021, 233: 122546.

[116]

XuX X, MakaraviciuteA, KumarS, WenC Y, SjodinM, AbdurakhmanovE, DanielsonU H, NyholmL, ZhangZAnal. Chem., 2019, 91: 14697.

[117]

AliakbarinodehiN, JollyP, BhallaN, MiodekA, De MicheliG, EstrelaP, CarraraSSci. Rep., 2017, 7: 1.

[118]

LiY F, LiuL L, FangX L, BaoJ C, HanM, DaiZ HElectrochim. Acta, 2012, 65: 1.

[119]

WangY F, ShaH F, KeH, XiongX, JiaN QElectrochim. Acta, 2018, 290: 90.

[120]

PurM R K, HosseiniM, FaridbodF, GanjaliM R, HosseinkhaniSSens. Actuators B Chem., 2018, 257: 87.

[121]

LiY, HanR, ChenM, ZhangL Y, WangG X, LuoX LAnal. Chem., 2021, 93: 4326.

[122]

LasserreP, BalansethupathyB, VezzaV J, ButterworthA, MacdonaldA, BlairE O, McAteerL, HannahS, WardA C, HoskissonP A, LongmuirA, SetfordS, FarmerE C W, MurphyM E, FlynnH, CorriganD KAnal. Chem., 2022, 94: 2126.

[123]

YasunE, LiC, BarutI, JanvierD, QiuL P, CuiC, TanW HNanoscale, 2015, 7: 10240.

[124]

KloseA M, MillerB LSensors, 2020, 20: 5745.

[125]

IzrailevS, StepaniantsS, BalseraM, OonoY, SchultenYBiophys. J., 1997, 72: 1568.

[126]

ZhangJ T, LakshmipriyaT, GopinathS C BACS Omega, 2020, 5: 25899.

[127]

MingT, ChengY, XingY, LuoJ P, MaoG, LiuJ T, SunS, KongF L, JinH Y, CaiX XACS Appl. Mater. Interfaces, 2021, 13: 46317.

[128]

ZhangY, ZhengB, ZhuC F, ZhangX, TanC L, LiH, ChenB, YangJ Z, ChenJ, HuangY, WangL H, ZhangHAdv. Mater., 2015, 27: 935.

[129]

ZhouY L, LiF, WuH W, ChenY, YinH S, AiS Y, WangJSens. Actuators B Chem., 2019, 296: 126664.

[130]

HouH F, JinY, WeiH, JiW L, XueY F, HuJ B, ZhangM N, JiangY, MaoL QAngew. Chem. Int. Ed., 2020, 59: 18996.

[131]

KhanS, BurciuB, FilipeC D M, LiY, DellingerK, DidarT FACS Nano, 2021, 15: 13943.

[132]

ZhangW, WangL, YangY S, GaskinP, TengK SACS Sens., 2019, 4: 1138.

[133]

RayappaM K, ViswanathanP A, RattuG, KrishnaP MJ. Agric. Food Chem., 2021, 69: 4578.

[134]

JinY, LiX, JiangYChem. Nano. Mat., 2021, 7: 489

[135]

ErfaniA, SeabergJ, AicheleC P, RamseyJ DBiomacromolecules, 2020, 21: 2557.

[136]

MadhurantakamS, KarnamJ B, BrabazonD, TakaiM, Ul AhadI, RayappanJ B B, KrishnanU MACS Chem. Neurosci., 2020, 11: 4024.

[137]

SomersonJ, PlaxcoK WMolecules, 2018, 23: 912.

[138]

JinJ, JiW L, LiL J, ZhaoG, WuW J, WeiH, MaF R, JiangY, MaoL QJ. Am. Chem. Soc., 2020, 142: 19012.

[139]

YuH X, AlkhamisO, CanouraJ, LiuY Z, XiaoYAngew. Chem. Int. Ed., 2021, 60: 16800.

[140]

ShenM M, KanX WElectrochim. Acta, 2021, 367: 137433.

[141]

WalshR, HoU, WangX L, DeRosaM CCan. J. Chem., 2015, 93: 572.

[142]

TalemiR P, MousaviS M, AfruziHMater. Sci. Eng. for Biological Applications, 2017, 73: 700.

[143]

TabbJ, RapoportE, HanI, LombardiJ, GreenONanomedicine, 2022, 47: 102528.

[144]

LiuX X, LiuJ WView, 2021, 2: 20200102.

[145]

JinH, ZhaoC Q, GuiR J, GaoX H, WangZ HAnal. Chim. Acta, 2018, 1025: 154.

[146]

LiuS, XingX R, YuJ H, LianW J, LiJ, CuiM, HuangJ DBiosens. Bioelectron., 2012, 36: 186.

[147]

WangW T, WangW, DavisJ J, LuoX LMikrochim. Acta, 2015, 182: 1123.

[148]

MartosI A, MollerA, FerapontovaE EACS Chem. Neurosci., 2019, 10: 1706.

[149]

ZhouJ W, WangW Y, YuP, XiongE H, ZhangX H, ChenJ HRSC Adv., 2014, 4: 52250.

[150]

TaheriR A, EskandariK, NegandaryMMicrochem. J., 2018, 143: 243.

[151]

SuiC J, ZhouY L, WangM Y, YinH S, WangP, AiS YSens. Actuators B: Chem., 2018, 266: 514.

[152]

WuL D, XuZ Y, MengQ Y, XiaoY S, CaoQ, RathiB, LiuH, HanG, ZhangJ, YanJAnal. Chim. Acta, 2020, 1099: 39.

[153]

KwonJ, LeeY, LeeT, AhnJ HAnal. Chem., 2020, 92: 5524.

[154]

WangC, ZhaoQBiosens. Bioelectron., 2020, 167: 112478.

[155]

MiaoX M, LiZ B, ZhuA H, FengZ Z, TianJ, PengXBiosens. Bioelectron., 2016, 83: 39.

[156]

GengX, ZhangM T, LongH Y, HuZ H, ZhaoB Y, FengL Y, DuJ YAnal. Chim. Acta, 2021, 1145: 124.

[157]

RenQ, MouJ S, GuoY M, WangH Q, CaoX Y, ZhangF FBiosens. Bioelectron., 2020, 166: 112448.

[158]

JinH, GuiR J, GaoX H, SunY JBiosens. Bioelectron., 2019, 145: 111732.

[159]

VogiaziV, de la CruzA A, VarugheseE A, HeinemanW R, WhiteR J, DionysiouD DACS ES&T Eng., 2021, 1: 1597.

[160]

TabriziM A, ShamsipurM, SaberR, SarkarS, EbrahimiVBiosens. Bioelectron., 2017, 98: 113.

[161]

MaC, LiuH Y, ZhangL N, LiH, YanM, SongX R, YuJ HBiosens. Bioelectron., 2018, 99: 8.

[162]

XingY C, ChenX X, JinB X, ChenP P, HuangC B, JinZ GLangmuir, 2021, 37: 3612.

[163]

CanovasR, DaemsE, CamposR, SchellinckS, MadderA, MartinsJ C, SobottF, De WaelKTalanta, 2022, 239: 123121.

[164]

FengD F, TanX C, WuY Y, AiC H, LuoY N, ChenQY, HanH YBiosens. Bioelectron., 2019, 129: 100.

[165]

WangH Z, WangY, LiuS, YuJ H, GuoY N, XuY, HuangJ DBiosens. Bioelectron., 2016, 80: 471.

[166]

WangX, DongS, GaiP, DuanR, LiFBiosens. Bioelectron., 2016, 82: 49.

[167]

StarrM B, ShiJ, WangX DAngew. Chem. Int. Ed., 2012, 51: 5962.

[168]

ChorsiM T, CurryE J, ChorsiH T, DasR, BaroodyJ, PurohitP K, IliesH, NguyenT DAdv. Mater., 2019, 31: 1802084.

[169]

QianW Q, YangW Y, ZhangY, BowenC R, YangYNanomicro Lett., 2020, 12: 149

[170]

MahapatraS D, MohapatraP C, AriaA I, ChristieG, MishraY K, HofmannS, ThakurV KAdv. Sci., 2021, 8: 2100864.

[171]

TianY L, ZhuP, ChenY T, BaiX Y, DuL P, ChenW, WuC S, WangPSens. Actuators B Chem., 2021, 346: 130446.

[172]

Fernandez LeiroR, ScheresS H WNature, 2016, 537: 339.

[173]

SinghS, HalderA, SinhaO, ChakrabartyN, ChatterjeeT, AdhikariA, SinghP, ShikhaD, GhoshR, BanerjeeA, Das MahapatraP P, MandharA, BhattacharyyaM, BoseS, AhmedS A, AlharbiA, HameedA M, PalS KFront. Oncol., 2020, 10: 529132.

[174]

LiF Q, YangW Q, ZhaoB R, YangS, TangQ Y, ChenX J, DaiH L, LiuPAdv. Sci., 2022, 9: 2102804.

[175]

HanK, LiuT, WangY H, MiaoPRev. Anal. Chem, 2016, 35: 201.

[176]

FamulokM, MayerGAcc. Chem. Res., 2011, 44: 1349.

[177]

SongK M, LeeS, BanCSensors, 2012, 12: 612.

[178]

CitartanM, Ch’ngE S, RozhdestvenskyT S, TangT HMicrochem. J., 2016, 128: 187.

[179]

GaoX Y, QiL, LiuK, MengC C, LiY C, YuH ZAnal. Chem., 2020, 92: 6229.

[180]

NieY M, YuanX D, ZhangP, ChaiY Q, YuanRAnal. Chem., 2019, 91: 3452.

[181]

YuceM, UllahN, BudakHAnalyst, 2015, 140: 5379.

[182]

ChenA L, YanM M, YangS MTrends Analyt. Chem., 2016, 80: 581.

[183]

WangT, ChenC Y, LarcherL M, BarreroR A, VeeduR NBiotechnol. Adv., 2019, 37: 28.

[184]

ShenJ W, LiY B, GuH S, XiaF, ZuoX LChem. Rev., 2014, 114: 7631.

[185]

YoonS, RossiJ JAdv. Drug Del. Rev., 2018, 134: 22.

[186]

DebiaisM, LelievreA, SmietanaM, MuellerSNucleic Acids Res., 2020, 48: 3400.

[187]

ChungS, MoonJ M, ChoiJ, HwangH, ShimY BBiosens. Bioelectron., 2018, 117: 480.

[188]

YangC N, TianY, WangB Y, GuoQ F, NieG MSens. Actuators B Chem., 2021, 338: 129870.

[189]

YouM, YangS, AnY, ZhangF, HeP GJ. Electroanal. Chem., 2020, 862: 114017.

[190]

AsdaqS M B, IkbalA M A, SahuR K, BhattacharjeeB, PaulT, DekaB, FattepurS, WidyowatiR, VijayaJ, Al MohainiM, AlsalmanA J, ImranM, NagarajaS, NairA B, AttimaradM, VenugopalaK NNanomaterials, 2021, 11: 1841.

[191]

SeoH B, GuM BJ. Bio. Eng., 2017, 11: 1.

[192]

TabriziM A, ShamsipurM, SaberR, SarkarSAnal. Chim. Acta, 2017, 985: 61.

[193]

ZhouY L, ZhangH Q, LiuL T, LiC M, ChangZ, ZhuX, YeB X, XuM TSci. Rep., 2016, 6: 35186.

[194]

HwangJ, SeoY, JoY, SonJ, ChoiJSci. Rep., 2016, 6: 34778.

[195]

WaliaS, ChandrasekaranA R, ChakrabortyB, BhatiaDACS Appl. Bio Mater., 2021, 4: 5392.

[196]

HartshornC M, BradburyM S, LanzaG M, NelA E, RaoJ, WangA Z, WiesnerU B, YangL, GrodzinskiPACS Nano, 2018, 12: 24.

[197]

ManochehryS, McConnellE M, LiYSci. Rep., 2019, 9: 1.

[198]

BoyaciogluO, StuartC H, KulikG, GmeinerW HMol. Ther. Nucleic Acids, 2013, 2: e107.

[199]

MairalT, NadalP, SvobodovaM, O’SullivanC KBiosens. Bioelectron., 2014, 54: 207.

[200]

ZhangZ, PandeyR, LiJ, GuJ, WhiteD, StaceyH D, AngJ C, SteinbergC J, CaprettaA, FilipeC D M, MossmanK, BalionC, MillerM S, SalenaB J, YamamuraD, SoleymaniL, BrennanJ D, LiYAngew. Chem. Int. Ed., 2021, 60: 24266.

[201]

VasudevanM, TaiM J Y, PerumalV, GopinathS C B, MurtheS S, OvinisM, MohamedN M, JoshiNBiotechnol. Appl. Biochem., 2021, 68: 1386

[202]

ZengR J, SuL S, LuoZ B, ZhangL J, LuM H, TangD PAnal. Chim. Acta, 2018, 1038: 21.

[203]

KimG, KimJ, KimS M, KatoT, YoonJ, NohS, ParkE Y, ParkC, LeeT, ChoiJ WSens. Actuators B Chem., 2022, 352: 131060.

[204]

WangQ P, ZhengH Y, GaoX Y, LinZ Y, ChenG NChem. Commun., 2013, 49: 11418.

[205]

YangX, LvJ J, YangZ H, YuanR, ChaiY QAnal. Chem., 2017, 89: 11636.

[206]

YuH Y, ZhaoZ, XiaoB C, DengM H, WangZ L, LiZ Q, ZhangH B, ZhangL, QianJ W, LiJ HAnal. Chem., 2021, 93: 13673.

[207]

SchoukrounB L R W S W R JAnal. Chem., 2014, 86: 1131.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/