Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties

Huimin Gao , Rui Shi , Youliang Zhu , Hujun Qian , Zhongyuan Lu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 653 -670.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 653 -670. DOI: 10.1007/s40242-022-2080-3
Review

Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties

Author information +
History +
PDF

Abstract

Polymers are widely used in our daily life and industry because of their intrinsic characteristics, such as multi-functionality, low cost, light mass, ease of processability, and excellent chemical stability. Polymers have multiscale space-time properties, which are mainly reflected in the fact that the properties of polymer systems depend not only on chemical structure and molecular properties, but also to a large extent on the aggregation state of molecules, that is, phase structure and condensed state structure. Thanks to the continuous development of simulation methods and the rapid improvement of scientific computation, computer simulation has played an increasingly important role in investigating the structure and properties of polymer systems. Among them, coarse-grained dynamics simulations provide a powerful tool for studying the self-assembly structure and dynamic behavior of polymers, such as glass transition and entanglement dynamics. This review summarizes the coarse-grained models and methods in the dynamic simulations for polymers and their composite systems based on graphics processing unit(GPU) algorithms, and discusses the characteristics, applications, and advantages of different simulation methods. Based on recent studies in our group, the main progress of coarse-grained simulation methods in studying the structure, properties and physical mechanism of polymer materials is reviewed. It is anticipated to provide a reference for further development of coarse-grained simulation methods and software suitable for polymer research.

Keywords

Polymer / Self-assembly / Glass transition / Polymer nanocomposites / Coarse-grained dynamics simulation

Cite this article

Download citation ▾
Huimin Gao, Rui Shi, Youliang Zhu, Hujun Qian, Zhongyuan Lu. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chemical Research in Chinese Universities, 2022, 38(3): 653-670 DOI:10.1007/s40242-022-2080-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Staudinger H. Ber. Dtsch. Chem. Ges., 1920, 53: 1073.

[2]

Anguita J V, Smith C T G, Stute T, Funke M, Delkowski M, Silva S R P. Nat. Mater., 2020, 19: 317.

[3]

Taub A, De Moor E, Luo A, Matlock D K, Speer J G, Vaidya U. Annu. Rev. Mater. Res., 2019, 49: 327.

[4]

Tran H, Feig V R, Liu K, Zheng Y, Bao Z N. Macromolecules, 2019, 52: 3965.

[5]

Charles A P R, Jin T Z, Mu R, Wu Y. Compr. Rev. Food Sci. Food Saf., 2021, 20: 6027.

[6]

Pfitzner A K, Moser von Filseck J, Roux A. Trends Cell Biol., 2021, 31: 856.

[7]

Zhao X H, Chen X Y, Yuk H, Lin S T, Liu X Y, Parada G. Chem. Rev., 2021, 121: 4309.

[8]

Rubinstein M, Colby R H. Polymer Physics, 2003, New York: Oxford University Press

[9]

Singh C, Ghorai P K, Horsch M A, Jackson A M, Larson R G, Stellacci F, Glotzer S C. Phys. Rev. Lett., 2007, 99: 226106.

[10]

Zhu G L, Huang Z H, Xu Z Y, Yan LT. Acc. Chem. Res., 2018, 51: 900.

[11]

Gao H M, Liu H, Qian H J, Jiao G S, Lu Z Y. Phys. Chem. Chem. Phys., 2018, 20: 1381.

[12]

Gao H M, Li B, Zhang R, Sun Z Y, Lu Z Y. J. Chem. Phys., 2020, 152: 094905.

[13]

Li Z Q, Zhu Y L, Niu W W, Yang X, Jiang Z Y, Lu Z Y, Liu X K, Sun J Q. Adv. Mater., 2021, 33: 2101498.

[14]

Zhu Y L, Lu Z Y. Acta Polymerica Sinica, 2021, 52: 884.

[15]

Ananth N. Annu. Rev. Phys. Chem., 2022, 73: 14.

[16]

Chen P Y, Yang Y, Dong B J, Huang Z H, Zhu G L, Cao Y F, Yan L T. Macromolecules, 2017, 50: 2078.

[17]

Xu G X, Huang Z H, Chen P Y, Cui T Q, Zhang X H, Miao B, Yan L T. Small, 2017, 13: 1603155.

[18]

Woolfson M M, Pert G J. An Introduction to Computer Simulation, 1999, Oxford: Oxford University Press

[19]

Allen M P, Tildesley D J. Computer Simulation of Liquid, 1989, New York: Oxford University Press.

[20]

Nekovee M, Coveney P V, Chen H D, Boghosian B M. Phys. Rev. E, 2000, 62: 8282.

[21]

Shan X W, Chen H D. Phys. Rev. E, 1994, 49: 2941.

[22]

Usta O B, Butler J E, Ladd A J C. Phys. Fluids, 200, 18: 031703.

[23]

Xu A G. Europhys. Lett., 2005, 69: 214.

[24]

Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications, 2001, New York: Academic Press

[25]

Rapaport D C. The Art of Molecular Dynamics Simulation, 2004, New York: Cambridge University Press.

[26]

Hu T, Wang C H, Wang M T, Li C M, Guo C X. ACS Catal., 2021, 11: 14417.

[27]

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. J. Chem. Phys., 1953, 21: 1087.

[28]

Wu Z H, Kalogirou A, de Nicola A, Milano G, Mueller-Plathe F. J. Comput. Chem., 2021, 42: 6.

[29]

Kubo A, Albin J M, Umeno Y. Polymer, 2019, 177: 84.

[30]

Xing J Y, Li S, Ma L J, Gao H M, Liu H, Lu Z Y. J. Chem. Phys., 2021, 154: 184903.

[31]

Ge Z H, Guan Z, He Y N. Comput. Math. Appl., 2018, 76: 393.

[32]

Bian P L, Schmauder S, Qing H. Compos. Struct., 2020, 245: 112337.

[33]

Cao Y D, Romero J, Olson J P, Degroote M, Johnson P D, Kieferová M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A. Chem. Rev., 2019, 119: 10856.

[34]

Prezhdo O V. Acc. Chem. Res., 2021, 54: 4239.

[35]

Ilie I M, Caflisch A. Chem. Rev., 2019, 119: 6956.

[36]

Hsu H P, Kremer K. J. Chem. Phys., 2019, 150: 091101.

[37]

Bailey M H J, Wilson M. Comput. Struct. Biotechnol. J., 2021, 19: 1253.

[38]

Hagita K, Akutagawa K, Tominaga T, Jinnai H. Soft Matter, 2019, 15: 926.

[39]

Nébouy M, Morthomas J, Fusco C, Baeza G P, Chazeau L. Macromolecules, 2020, 53: 3847.

[40]

Tasche J, Sabattié E F D, Thompson R L, Campana M, Wilson M R. Macromolecules, 2020, 53: 2299.

[41]

Wen C Y, Odle R, Cheng S F. Macromolecules, 2021, 54: 143.

[42]

Joshi S Y, Deshmukh S A. Mol. Simulat., 2021, 47: 786.

[43]

Wang Y L, Li Z W, Liu H, Lu Z Y. Prog. Phys., 2011, 31: 1.

[44]

Wang J H, Han Y F, Xu Z Y, Yang X Z, Ramakrishna S, Liu Y. Macromol. Mater. Eng., 2021, 306: 2000724.

[45]

Bianco V, Locatelli E, Malgaretti P. Phys. Rev. Lett., 2018, 121: 217802.

[46]

Schulz M, Dittmann J, Böl M. J. Mech. Phys. Solids, 2019, 130: 101.

[47]

Müller M, Daoulas K C. Phys. Rev. Lett., 2011, 107: 227801.

[48]

Zhao Y, De Nicola A, Kawakatsu T, Milano G. J. Comput. Chem., 2012, 33: 868.

[49]

Ercolessi F, Adams J B. Europhysics Lett., 1994, 26: 583.

[50]

Izvekov S, Parrinello M, Burnham C J, Voth G A. J. Chem. Phys., 2004, 120: 10896.

[51]

Shell M S. J. Chem. Phys., 2008, 129: 144108.

[52]

Izvekov S, Voth G A. J. Phys. Chem. B, 2005, 109: 2469.

[53]

Lyubartsev A P, Naômé A, Vercauteren D P, Laaksonen A. J. Chem. Phys., 2015, 143: 243120.

[54]

Reith D, Pütz M, Müller-Plathe F. J. Comput. Chem., 2003, 24: 1624.

[55]

Marrink S J, de Vries A H, Mark A E. J. Phys. Chem. B, 2004, 108: 750.

[56]

Marrink S J, Tieleman D P. Chem. Soc. Rev., 2013, 42: 6801.

[57]

Deichmann G, van der Vegt N F A. J. Chem. Phys., 2018, 149: 244114.

[58]

Hoogerbrugge P J, Koelman J M V A. Europhys. Lett., 1992, 19: 155.

[59]

Español P, Warren P. Europhys. Lett., 1995, 30: 191.

[60]

Groot R D, Warren P B. J. Chem. Phys., 1997, 107: 4423.

[61]

Young C D, Sing C E. J. Chem. Phys., 2019, 151: 124907.

[62]

Lang P, Frey E. Nat. Commun., 2018, 9: 494.

[63]

Lamura A, Winkler R G, Gompper G. J. Chem. Phys., 2021, 154: 224901.

[64]

Milano G, Kawakatsu T. J. Chem. Phys., 2009, 130: 214106.

[65]

Zhu Y L, Lu Z Y, Milano G, Shi A C, Sun Z Y. Phys. Chem. Chem. Phys., 201, 18: 9799.

[66]

Kolli H B, de Nicola A, Bore S L, Schafer K, Diezemann G, Gauss J, Kawakatsu T, Lu Z Y, Zhu Y L, Milano G, Cascella M. J. Chem. Theory Comput., 2018, 14: 4928.

[67]

De Nicola A, Soares T A, Santos D E S, Bore S L, Sevink G J A. BBA-General Subjects, 2021, 1865: 129570.

[68]

Wu Z H, Milano G, Müller-Plathe F. J. Chem. Theory Comput., 2021, 17: 474.

[69]

Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J. Comput. Chem., 2013, 34: 2197.

[70]

Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y. Mol. Phys., 2018, 116: 1065.

[71]

Chen T, Qian H J, Zhu Y L, Lu Z Y. Macromolecules, 2015, 48: 2751.

[72]

Niu W W, Zhu Y L, Wang R, Lu Z Y, Liu X K, Sun J Q. ACS Appl. Mater. Interfaces, 2020, 12: 30805.

[73]

Gao H M, Zhao L, Liu K, Lu Z Y. J. Phys. Chem. Lett., 2021, 12: 2340.

[74]

Liu H, Zhu Y L, Lu Z Y, Müller-Plathe F. J. Comput. Chem., 201, 37: 2634.

[75]

Li Z W, Zhu Y L, Lu Z Y, Sun Z Y. Soft Matter, 201, 12: 741.

[76]

Li Z W, Zhu Y L, Lu Z Y, Sun Z Y. Soft Matter, 2018, 14: 7625.

[77]

Chen L J, Qian H J, Lu Z Y, Li Z S, Sun C C. J. Phys. Chem. B, 200, 110: 24093.

[78]

Xu D, Ni C Y, Zhu Y L, Lu Z Y, Xue Y H, Liu H. J. Chem. Phys., 2018, 148: 024901.

[79]

Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9: 101.

[80]

Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41: 5969.

[81]

Huang C H, Zhu Y Y, Man X K. Phys. Rep., 2021, 932: 1.

[82]

Li L, Liu X, Pal S, Wang S L, Ober C K, Giannelis E P. Chem. Soc. Rev., 2017, 46: 4855.

[83]

Lépinay S, Ianoul A, Albert J. Talanta, 2014, 128: 401.

[84]

Paloni J M, Olsen B D. ACS Appl. Polym. Mater., 2020, 2: 1114.

[85]

Yao C, Tang J P, Zhu C X, Yang S, Tang H, Dong L X, Zhang C Z, Tang Q Y, Liu P F, Yang D Y. Nano Today, 2022, 42: 101352.

[86]

Ahmed M T, Morshed M N, Farjana S, An S K. New J. Chem., 2020, 44: 12122.

[87]

Li L, Li W H. Giant, 2021, 7: 100065.

[88]

Xu P F, Gao L, Cai C H, Lin J P, Wang L Q, Tian X H. Angew. Chem. Int. Ed., 2020, 59: 14281.

[89]

Hamley I W. Prog. Polym. Sci., 2009, 34: 1161.

[90]

Li W H, Gu X Y. Mol. Syst. Des. Eng., 2021, 6: 355.

[91]

Dai X B, Zhang X Y, Gao L J, Yan L T. Acta Polymerica Sinica, 2021, 52: 1076.

[92]

Hou W M, Feng Y, Li B H, Zhao H Y. Macromolecules, 2018, 51: 1894.

[93]

Deng Z X, You X, Yuan B, Yang K. Giant, 2021, 8: 100071.

[94]

Du F F, Qiao B F, Nguyen T D, Vincent M P, Bobbala S, Yi S J, Lescott C, Dravid V P, Olvera de la Cruz M, Scott E A. Nat. Commun., 2020, 11: 4896.

[95]

Xu B L, Qi S H, Jin M M, Cai X Y, Lai L F, Sun Z T, Han X G, Lin Z F, Shao H, Peng P, Xiang Z H, ten Elshof J E, Tan R, Liu C, Zhang Z X, Duan X C, Ma J M. Chinese Chem. Lett., 2019, 30: 2053.

[96]

Springer M A, Liu T J, Kuc A, Heine T. Chem. Soc. Rev., 2020, 49: 2007.

[97]

Sakamoto J, van Heijst J, Lukin O, Schlüter A D. Angew. Chem. Int. Ed., 2009, 48: 1030.

[98]

Servalli M, Schlüter A D. Annu. Rev. Mater. Res., 2017, 47: 361.

[99]

Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[100]

Wang Z F, Zhang S N, Chen Y, Zhang Z J, Ma S Q. Chem. Soc. Rev., 2020, 49: 708.

[101]

Bhola R, Payamyar P, Murray D J, Kumar B, Teator A J, Schmidt M U, Hammer S M, Saha A, Sakamoto J, Schlüter A D, King B T. J. Am. Chem. Soc., 2013, 135: 14134.

[102]

Bisbey R P, Dichtel W R. ACS Cent. Sci., 2017, 3: 533.

[103]

Zhu Y L, Zhao H Y, Fu C L, Li Z W, Sun Z Y, Lu Z Y. J. Phys. Chem. Lett., 2020, 11: 9952.

[104]

Zhu Y L, Fu C L, Li Z W, Sun Z Y. J. Phys. Chem. Lett., 2020, 11: 179.

[105]

Zhu Y L, Zhao H Y, Fu C L, Li Z W, Sun Z Y. Nanoscale, 2020, 12: 22107.

[106]

Li Y, Gao H M, Yu H, Jiang K, Yu H, Yang Y, Song Y, Zhang W K, Shi H C, Lu Z Y, Liu K. Sci. Adv., 2019, 5: eaaw9120.

[107]

Chen T, Amin I, Jordan R. Chem. Soc. Rev., 2012, 11: 3280.

[108]

Carbonell C, Valles D, Wong A M, Carlini A S, Touve M A, Korpanty J, Gianneschi N C, Braunschweig A B. Nat. Commun., 2020, 11: 1244.

[109]

Zhang K, Gao H M, Xu D, Lu Z Y. Soft Matter, 2019, 15: 890.

[110]

Yang T H, Shi Y F, Janssen A, Xia Y N. Angew. Chem. Int. Ed., 2020, 59: 15378.

[111]

Jackson A M, Hu Y, Silva P J, Stellacci F. J. Am. Chem. Soc., 200, 128: 11135.

[112]

Stirling J L, Lekkas I, Sweetman A, Djuranovic P, Guo Q M, Pauw B, Granwehr J, Levy R, Moriarty P. PLoS ONE, 2014, 9: e108482.

[113]

Ong Q K, Stellacci F. PLoS ONE, 2015, 10: e0135594.

[114]

Gao H M, Liu H, Zhang R, Lu Z Y. J. Phys. Chem. B, 2019, 123: 10311.

[115]

Wong C K, Chen F, Walther A, Stenzel M H. Angew. Chem., Int. Ed., 2019, 58: 7335.

[116]

Ortel E, Sokolov S, Zielke C, Lauermann I, Selve S, Weh K, Paul B, Polte J, Kraehnert R. Chem. Mater., 2012, 24: 3828.

[117]

Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 7: 442.

[118]

Choueiri R M, Galati E, Thérien-Aubin H, Klinkova A, Larin E M, Querejeta-Fernández A, Han L L, Xin H L, Gang O, Zhulina E B, Rubinstein M, Kumacheva E. Nature, 201, 538: 79.

[119]

Yu L, Shi R, Qian H J, Lu Z Y. Phys. Chem. Chem. Phys., 2019, 21: 1417.

[120]

Yu L, Zhang N, Zhang N N, Gu Q Q, Xue Y, Wang Y X, Han C L, Liu K, Sun Z Y, Qian H J, Lu Z Y. J. Phys. Chem. Lett., 2021, 12: 7100.

[121]

Blaaderen A V. Science, 2003, 301: 470.

[122]

Yi C L, Liu H, Zhang S Y, Yang Y Q, Zhang Y, Lu Z Y, Kumacheva E, Nie Z H. Science, 2020, 369: 1369.

[123]

Wu J D, Zheng Z, Chong Y Y, Li X C, Pu L Y, Tang Q Y, Yang L, Wang X H, Wang F Q, Liang G L. Adv. Mater., 2018, 30: 1805018.

[124]

Nguyen M, Qiu Y Q, Vaikuntanathan S. Annu. Rev. Condens. Matter Phys., 2021, 12: 273.

[125]

Fu Q R, Li Z, Fu F F, Chen X Y, Song J B, Yang H H. Nano Today, 2021, 36: 101014.

[126]

Zheng Z, Chen P Y, Xie M L, Wu C F, Luo Y F, Wang W T, Jiang J, Liang G L. J. Am. Chem. Soc., 201, 138: 11128.

[127]

Shen B W, Zhu Y L, Kim Y J, Zhou X B, Sun H N, Lu Z Y, Lee M. Nat. Commun., 2019, 10: 1080.

[128]

Long D R, Conca L, Sotta P. Phys. Rev. Mater., 2018, 2: 105601.

[129]

Glova A D, Falkovich S G, Dmitrienko D I, Lyulin A V, Larin S V, Nazarychev V M, Karttunen M, Lyulin S V. Macromolecules, 2018, 51: 552.

[130]

Hao Z W, Ghanekarade A, Zhu N T, Randazzo K, Kawaguchi D, Tanaka K, Wang X P, Simmons D S, Priestley R D, Zuo B. Nature, 2021, 596: 372.

[131]

Müller-Plathe F. ChemPhysChem, 2002, 3: 754.

[132]

Peter C, Kremer K. Soft Matter, 2009, 5: 4357.

[133]

Paul W, Smith G D. Rep. Prog. Phys., 2004, 67: 1117.

[134]

Lyulin A V, Balabaev N K, Michels M A J. Macromolecules, 2003, 36: 8574.

[135]

Lyulin A V, Michels M A J. Macromolecules, 2002, 35: 1463.

[136]

Krushev S, Paul W, Smith G D. Macromolecules, 2002, 35: 4198.

[137]

Krushev S, Paul W. Phys. Rev. E, 2003, 67: 021806.

[138]

Paul W, Bedrov D, Smith G D. Phys. Rev. E, 200, 74: 021501.

[139]

Xie S J, Qian H J, Lu Z Y. J. Chem. Phys., 2012, 137: 244903.

[140]

Xie S J, Qian H J, Lu Z Y. J. Chem. Phys., 2014, 140: 044901.

[141]

Xie S J, Qian H J, Lu Z Y. Polymer, 2015, 56: 545.

[142]

Xie S J, Qian H J, Lu Z Y. J. Chem. Phys., 2015, 142: 074902.

[143]

Hung J H, Patra T K, Meenakshisundaram V, Mangalara J H, Simmons D S. Soft Matter, 2019, 15: 1223.

[144]

Baschnagel J, Varnik F. J. Phys.: Condens. Matter, 2005, 17: R851.

[145]

Everaers R, Karimi-Varzaneh H A, Fleck F, Hojdis N, Svaneborg C. Macromolecules, 2020, 53: 1901.

[146]

Bulacu M, van der Giessen E. Phys. Rev. E, 2007, 76: 011807.

[147]

Bernabei M, Moreno A J, Colmenero J. Phys. Rev. Lett., 2008, 101: 255701.

[148]

Li S J, Xie S J, Li Y C, Qian H J, Lu Z Y. Phys. Rev. E, 201, 93: 012613.

[149]

Schoenholz S S, Cubuk E D, Sussman D M, Kaxiras E, Liu A J. Nat. Phys., 201, 12: 469.

[150]

Wang Y C, Gu K C, Monnier X, Jeong H, Chowdhury M, Cangialosi D, Loo Y L, Priestley R D. ACS Macro Lett., 2019, 8: 1115.

[151]

Popov I, Carroll B, Bocharova V, Genix A C, Cheng S W, Khamzin A, Kisliuk A, Sokolov A P. Macromolecules, 2020, 53: 4126.

[152]

Winkler R, Unni A B, Tu W K, Chat K, Adrjanowicz K. J. Phys. Chem. B, 2021, 125: 5991.

[153]

Li S J, Qian H J, Lu Z Y. Soft Matter, 2019, 15: 4476.

[154]

Li S J, Qian H J, Lu Z Y. Phys. Chem. Chem. Phys., 2019, 21: 15888.

[155]

Mishra A, Ferhan A R, Ho C M B, Lee J, Kim D H, Kim Y J, Yoon Y J. Int. J. of Precis. Eng. and Manuf.-Green Tech., 2021, 8: 945.

[156]

Zhang B, Chen X, Lu W C, Zhang Q M, Bernholc J. Nanoscale, 2021, 13: 10933.

[157]

Jambhulkar S, Xu W H, Ravichandran D, Prakash J, Kannan A N M, Song K. Nano Lett., 2020, 20: 3199.

[158]

Shi R, Qian H J, Lu Z Y. Phys. Chem. Chem. Phys., 2019, 21: 7115.

[159]

Shi R, Qian H J, Lu Z Y. Phys. Chem. Chem. Phys., 2017, 19: 16524.

[160]

Shi R, Qian H J, Lu Z Y. Macromolecules, 2019, 52: 7353.

[161]

Frisch H, Menzel J P, Bloesser F R, Marschner D E, Mundsinger K, Barner-Kowollik C. J. Am. Chem. Soc., 2018, 140: 9551.

[162]

Verde-Sesto E, Blazquez-Martin A, Pomposo J A. Polymers, 2019, 11: 1903.

[163]

Hoffmann J F, Roos A H, Schmitt F J, Hinderberger D, Binder W H. Angew. Chem. Int. Ed., 2021, 60: 7820.

[164]

Carroll B, Bocharova V, Carrillo J M Y, Kisliuk A, Cheng S W, Yamamoto U, Schweizer K S, Sumpter B G, Sokolov A P. Macromolecules, 2018, 51: 2268.

[165]

Cheng S, Xie S J, Carrillo J M Y, Carroll B, Martin H, Cao P F, Dadmun M D, Sumpter B G, Novikov V N, Schweizer K S, Sokolov A P. ACS Nano, 2017, 11: 752.

[166]

Carroll B, Cheng S, Sokolov A P. Macromolecules, 2017, 50: 6149.

[167]

Ge S R, Samanta S, Tress M, Li B, Xing K, Dieudonné-George P, Genix A C, Cao P F, Dadmun M, Sokolov A P. Macromolecules, 2021, 54: 4246.

[168]

Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Van Horn B, Guan Z B, Chen G H, Krishnan R S. Science, 200, 311: 1740.

[169]

Mackay M E, Dao T T, Tuteja A, Ho D L, Van Horn B, Kim H C, Hawker C J. Nat. Mater., 2003, 2: 762.

[170]

Tuteja A, Mackay M E, Narayanan S, Asokan S, Wong M S. Nano Lett., 2007, 7: 1276.

[171]

Tuteja A, Mackay M E, Hawker C J, van Horn B. Macromolecules, 2005, 38: 8000.

[172]

Tuteja A, Duxbury P M, Mackay M E. Macromolecules, 2007, 40: 9427.

[173]

Chen T, Zhao H Y, Shi R, Lin W F, Jia X M, Qian H J, Lu Z Y, Zhang X X, Li Y K, Sun Z Y. Nat. Commun., 2019, 10: 5552.

[174]

Zhu J L, Chu M, Chen Z W, Wang L Q, Lin J P, Du L. Chem. Mater., 2020, 32: 4527.

[175]

Zhao S C, Cai T Y, Zhang L S, Li W H, Lin J P. ACS Macro. Lett., 2021, 10: 598.

[176]

Zhu M X, Song H G, Yu Q C, Chen J M, Zhang H Y. Int. J. Heat Mass Transf., 2020, 162: 120381.

[177]

Yang H, Zhang Z T, Zhang J C, Zeng X C. Nanoscale, 2018, 10: 19092.

[178]

Wei H, Zhao S S, Rong Q Y, Bao H. Int. J. Heat Mass Transf., 2018, 127: 908.

[179]

Chen G, Tao L, Li Y. Polymers, 2021, 13: 1898.

[180]

Chandrasekaran A, Kim C, Venkatram S, Ramprasad R. Macromolecules, 2020, 53: 4764.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/