Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation

Xinyu Zhang , Pengpeng Tang , Guangyao Zhai , Xiu Lin , Qiang Zhang , Jiesheng Chen , Xiao Wei

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1292 -1300.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1292 -1300. DOI: 10.1007/s40242-022-2076-z
Article

Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation

Author information +
History +
PDF

Abstract

In this study, we have provided a facile solution to synthesize well-aligned titanium dioxide nanorods by using hydrothermal reaction. By calcining the materials under different atmospheres and temperatures, a batch of titanium dioxides with excellent oxygen evolution reaction(OER) catalytic efficiency were obtained. This new structured TiO2 photoanode material yields a high photocurrent density of 5.69 mA/cm2 at 1.23 V vs. reversible hydrogen electrode(RHE) under simulated solar light(100 mW/cm2). Surface photovoltage techniques and other measurements were carried out to confirm that the enhanced photoelectrochemical performances were attributed to the synergistic effect of the phase junction and a certain content of surface states, which accelerate the separation and transmission of the photogenerated charges. This material with phase junction and surface states promises a potential application in the field of photoelectric catalysis under solar light.

Keywords

Phase junction / Surface state / TiO2 / Photoelectrochemical water splitting

Cite this article

Download citation ▾
Xinyu Zhang, Pengpeng Tang, Guangyao Zhai, Xiu Lin, Qiang Zhang, Jiesheng Chen, Xiao Wei. Regulating Phase Junction and Oxygen Vacancies of TiO2 Nanoarrays for Boosted Photoelectrochemical Water Oxidation. Chemical Research in Chinese Universities, 2022, 38(5): 1292-1300 DOI:10.1007/s40242-022-2076-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[2]

Zhang J J, Zhao T J, Wang H H, Lin Y X, Zhai G Y, Jiang Z D, Hirano S I, Li X H, Chen J S. Chem. Commun., 2019, 55: 3971.

[3]

Liang X, Shi L, Cao R, Wan G, Yan W, Chen H, Liu Y, Zou X. Adv. Mater., 2020, 32: e2001430.

[4]

Grätzel M. Nature, 2001, 414: 338.

[5]

Zhang W, Tian Y, He H, Xu L, Li W, Zhao D. Natl. Sci. Rev., 2020, 7: 1702.

[6]

Yang Y, Yin L C, Gong Y, Niu P, Wang J Q, Gu L, Chen X, Liu G, Wang L, Cheng H M. Adv. Mater., 2018, 30: e1704479.

[7]

Zhang W, He H, Tian Y, Lan K, Liu Q, Wang C, Liu Y, Elzatahry A, Che R, Li W, Zhao D. Chem. Sci., 2019, 10: 1664.

[8]

Wang X, Li C. J. Phys. Chem. C, 2018, 122: 21083.

[9]

Wang M, Han J, Hu Y, Guo R. RSC Adv., 2017, 7: 15513.

[10]

Cho I S, Lee C H, Feng Y, Logar M, Rao P M, Cai L, Kim D R, Sinclair R, Zheng X. Nat. Commun., 2013, 4: 1723.

[11]

Xu M, Da P, Wu H, Zhao D, Zheng G. Nano. Lett., 2012, 12: 1503.

[12]

Zywitzki D, Jing H, Tüysüz H, Chan C K. J. Mater. Chem. A, 2017, 5: 10957.

[13]

Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R, Dal Santo V. J. Am. Chem. Soc., 2012, 134: 7600.

[14]

Wang A, Wu S, Dong J, Wang R, Wang J, Zhang J, Zhong S, Bai S. Chem. Eng. J., 2021, 404: 127145.

[15]

Chen X, Liu L, Huang F. Chem. Soc. Rev., 2015, 44: 1861.

[16]

Mao C, Zuo F, Hou Y, Bu X, Feng P. Angew. Chem. Int. Ed. Engl., 2014, 53: 10485.

[17]

Shingai D, Ide Y, Sohn W Y, Katayama K. Phys. Chem. Chem. Phys., 2018, 20: 3484.

[18]

Yan P, Wang X, Zheng X, Li R, Han J, Shi J, Li A, Gan Y, Li C. Nano Energy, 2015, 15: 406.

[19]

Wei N, Liu Y, Feng M, Li Z, Chen S, Zheng Y, Wang D. Appl. Catal. B, 2019, 244: 519.

[20]

Liu J, Yu X, Liu Q, Liu R, Shang X, Zhang S, Li W, Zheng W, Zhang G, Cao H, Gu Z. Appl. Catal. B, 2014, 158: 296. 159

[21]

Zhang J, Xu Q, Feng Z, Li M, Li C. Angew. Chem. Int. Ed. Engl., 2008, 47: 1766.

[22]

Sutiono H, Tripathi A M, Chen H-M, Chen C-H, Su W-N, Chen L-Y, Dai H, Hwang B-J. ACS Sustain. Chem. Eng., 201, 4: 5963.

[23]

Liu D, Zhang C, Yu Y, Shi Y, Yu Y, Niu Z, Zhang B. Nano Res., 2017, 11: 603.

[24]

Zhang Y, Xu Z, Li G, Huang X, Hao W, Bi Y. Angew. Chem. Int. Ed. Engl., 2019, 58: 14229.

[25]

Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M. Adv. Funct. Mater., 2013, 23: 5444.

[26]

Wei X, Han L N, Mao C Y, Wang D J, Li X H, Feng P Y, Chen J S. Phys. Chem. Chem. Phys., 2015, 17: 5202.

[27]

Wei X, Xie T, Peng L, Fu W, Chen J, Gao Q, Hong G, Wang D. J. Phys. Chem. C, 2011, 115: 8637.

[28]

Chen R, Fan F, Dittrich T, Li C. Chem. Soc. Rev., 2018, 47: 8238.

[29]

Liu B, Aydil E S. J. Am. Chem. Soc., 2008, 131: 3985.

[30]

Feng X, Zhu K, Frank A J, Grimes C A, Mallouk T E. Angew. Chem. Int. Ed. Engl., 2012, 51: 2727.

[31]

Chen Z, Jaramillo T F, Deutsch T G, Kleiman-Shwarsctein A, Forman A J, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland E W, Domen K, Miller E L, Turner J A, Dinh H N. J. Mater. Res., 2011, 25: 3.

[32]

Hu J, Zhang S, Cao Y, Wang H, Yu H, Peng F. ACS Sustain. Chem. Eng., 2018, 6: 10823.

[33]

Bu Q, Li S, Zhang K, Lin Y, Wang D, Zou X, Xie T. ACS Sustain. Chem. Eng., 2019, 7: 10971.

[34]

Zhang X, Lin Y, He D, Zhang J, Fan Z, Xie T. Chem. Phys. Lett., 2011, 504: 71.

[35]

Ai C, Xie P, Zhang X, Zheng X, Li J, Kafizas A, Lin S. ACS Sustain. Chem. Eng., 2019, 7: 5274.

[36]

Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. ACS Catal., 2020, 10: 3533.

[37]

Kang Q., Cao J., Zhang Y., Liu L., Xu H., Ye J., J. Mater. Chem. A, 2013, 1

[38]

Gao Y, Zhu J, An H, Yan P, Huang B, Chen R, Fan F, Li C. J. Phys. Chem. Lett., 2017, 8: 1419.

[39]

Zhou X, Qian K, Zhang Y, Li D, Wei Z, Wang H, Ye R, Liu J, Ye B, Huang W. Chem. Commun., 2020, 56: 1964.

[40]

Zhu K, Shi F, Zhu X, Yang W. Nano Energy, 2020, 73: 104761.

[41]

Tsui L-K, Xu Y, Dawidowski D, Cafiso D, Zangari G. J. Mater. Chem. A, 201, 4: 19070.

[42]

Fu Z, Jiang T, Zhang L, Liu B, Wang D, Wang L, Xie T. J. Mater. Chem. A, 2014, 2: 13705.

[43]

Bisquert J, Compte A. J. Electroanal. Chem., 2001, 499: 112.

[44]

Choi W, Shin H-C, Kim J M, Choi J-Y, Yoon W-S. J. Electrochem. Sci. Technol., 2020, 11: 1.

[45]

Macdonald D D. Electrochim. Acta, 200, 51: 1376.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/