Analysis on First-stage Ignition of n-Heptane at Low Temperatures with a Lumped Skeletal Mechanism

Jiayu Xiao , Jingbo Wang , Fan Wang , Xiangyuan Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1482 -1491.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1482 -1491. DOI: 10.1007/s40242-022-2066-1
Article

Analysis on First-stage Ignition of n-Heptane at Low Temperatures with a Lumped Skeletal Mechanism

Author information +
History +
PDF

Abstract

Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO2 to produce alkene and HO2 is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO2 decomposition is larger than that of the isomerization of RO2 to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.

Keywords

Reduced mechanism / Lumping of isomer / Low-temperature reaction / First-stage ignition / Negative temperature coefficient (NTC) phenomenon

Cite this article

Download citation ▾
Jiayu Xiao, Jingbo Wang, Fan Wang, Xiangyuan Li. Analysis on First-stage Ignition of n-Heptane at Low Temperatures with a Lumped Skeletal Mechanism. Chemical Research in Chinese Universities, 2022, 38(6): 1482-1491 DOI:10.1007/s40242-022-2066-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leclerc F B. Prog. Energy Combust. Sci., 2008, 34(4): 440.

[2]

Sjoeberg M, Dec J E. Proc. Combust. Inst., 2007, 31(2): 2895.

[3]

Zhang M, Wang J H, Jin W, Huang Z H, Kobayashi H, Ma L. Combust. Flame, 2015, 162(5): 2087.

[4]

Li S H, Li R, Guo J J, Tan N X, Wang F, Li X Y. Acta Phys.-Chim. Sin., 201, 32(7): 1623.

[5]

Griffiths J F, MacNamara J P, Sheppard C G W, Turton D A, Whitaker B J. fuel, 2002, 81: 2219.

[6]

Yao M F, Zheng Z L, Liu H F. Prog. Energy Combust. Sci., 2009, 35(5): 398.

[7]

Hartmann L, Lucka K, Köhne H. J. Power Sources, 2003, 118(1): 286.

[8]

Benson S W. Prog. Energy Combust. Sci., 1981, 7(2): 125.

[9]

Merchant S S, Goldsmith C F, Vandeputte A G, Burke M P, Klippenstein S J. Combust. Flame, 2015, 162(10): 3658.

[10]

Zádor J, Taatjes C A, Fernandes R X. Prog. Energy Combust. Sci., 2011, 37(4): 371.

[11]

Bai S R, Davis M J, Sivaramakrishnan R, Skodje R T. Combust. Flame, 2019, 202: 154.

[12]

Sun W, Chen Z, Gou X, Ju Y G. Combust. Flame, 2010, 157(7): 1298.

[13]

Ning H B, Li Z R, Li X Y. Acta Phys.-Chim. Sin., 201, 32(1): 131.

[14]

Jiang Y, Qiu R. Acta Phys.-Chim. Sin., 2009, 25(5): 1019.

[15]

Zhang F, Ren Z, Zhong S H, Yao M F, Peng Z J. Acta Phys.-Chim., 2019, 35(2): 158.

[16]

Dryer F L. Proc. Combust. Inst., 2015, 35(1): 117.

[17]

Zhao P, Law C K. Combust. Flame, 2013, 160(11): 2352.

[18]

Campbell M F, Wang S K, Goldenstein C S, Spearrin R M, Tulgestke A M, Zaczek L T, Davidson D F, Hanson R K. Proc. Combust. Inst., 2015, 35(1): 231.

[19]

Liu Y P, Yan Y W, Dai C, Li J H. Chem. Res. Chinese Universities, 2017, 33(2): 274.

[20]

Guo J J, Wang J B, Hua X X, Li Z R, Tan N X, Li X Y. Chem. Res. Chinese Universities, 2014, 30(3): 480.

[21]

Pham T V. Chem. Res. Chinese Universities, 2019, 35(5): 884.

[22]

Zhang P, Ji W Q, He T J, He X, Wang Z, Yang B, Law C K. Combust. Flame, 201, 167: 14.

[23]

Liang W K, Law C K. Combust. Flame, 2018, 188: 162.

[24]

Curran H J, Gaffuri P, Pitz W J, Westbrook C K. Combust. Flame, 1998, 114(1): 149.

[25]

Mehl M, Pitz W J, Westbrook C K, Curran H J. Proc. Combust. Inst., 2011, 33(1): 193.

[26]

Baigmohammadi M, Patel V, Nagaraja S, Ramalingam A, Martinez S, Panigrahy S, Mohamed A A E S, Somers K P, Burke U, Heufer K A, Curran H J. Energy Fuels, 2020, 34(7): 8808.

[27]

Panigrahy S, Ling J H, Nagaraja S S, Zuo Z H, Kim G, Dong S J, Kukkadapu G, Pitz W J, Vasu S S, Curran H J. Proc. Combust. Inst., 2021, 38(1): 479.

[28]

Lokachari N, Panigrahy S, Kukkadapu G, Gihun K, Vasu S S, Pitz W J, Curran H J. Combust. Flame, 2020, 222: 186.

[29]

Nagaraja S S, Liang J H, Dong S J, Panigrahy S, Sahu A, Kukkadapu G, Wagnon S W, Pitz W J, Curran H J. Combust. Flame, 2020, 222: 186.

[30]

Nagaraja S S, Power J, Kukkadapu G, Dong S J, Wagnon S W, Pitz W J, Curran H J. Proc. Combust. Inst., 2021, 38(1): 881.

[31]

Dong S J, Zhang K W, Senecal P K, Kukkadapu G, Wagnon S W, Barrett S, Lokachari N, Panigaphy S, Pitz W J, Curran H J. Proc. Combust. Inst., 2021, 38(1): 611.

[32]

Mohamed A A E S, Panigrahy S, Sahu A B, Bourque G, Curran H J. Proc. Combust. Inst., 2021, 38(1): 365.

[33]

Dong S J, Zhang K W, Ninnemann E M, Najjar A, Kukkadapu G, Baker J, Arafin F, Wang Z D, Pitz W J, Vasu S S, Sarathy S M, Senecal P K, Curran H J. Combust. Flame, 2021, 223: 166.

[34]

Lu T F, Law C K. Proc. Combust. Inst., 2005, 30(1): 1333.

[35]

Wang Q D. Acta Phys.-Chim. Sin., 201, 32(3): 595.

[36]

Whitehouse L E, Tomlin A S, Pilling M J. Atm. Chem. Phys., 2004, 4(4): 2025.

[37]

Lu T F, Law C K. Combust. Flame, 2008, 154(1): 153.

[38]

Treviño C, Turányi T. Combust. Theory Model., 2019, 23(6): 1150.

[39]

Peters N, Paczko G, Seiser R, Seshadri K. Combust. Flame, 2002, 128(1): 38.

[40]

Westbrook C K. Proc. Combust. Inst., 2000, 28: 1563.

[41]

Kazakov A, Chaos M, Zhao Z, Dryer F L. J. Phys. Chem. A, 200, 110(21): 7003.

[42]

Battin-Leclerc F, Herbinet O, Glaude P A, Fournet R, Zhou Z Y, Deng L L, Guo H J, Xie M F, Qi F. Angew. Chem.-Int. Edit., 2010, 49: 3169.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/