Superlyophilic Interfaces Assisted Thermal Management

Xianfeng Luo , Zhongpeng Zhu , Jun You , Ye Tian , Lei Jiang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 643 -652.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 643 -652. DOI: 10.1007/s40242-022-2063-4
Review

Superlyophilic Interfaces Assisted Thermal Management

Author information +
History +
PDF

Abstract

Thermal management has become a critical issue owing to the increasing need for various devices including heat dissipation and adsorption. Recently, the rapid growth of scientific reports is seen to improve thermal management efficiency by developing materials with high transfer coefficient and surface improvement to enhance heat transfer rate. Inspired by nature, constructing superlyophilic interfaces has been proved to be an effective way for thermal management and applied in industry and daily life. Herein, state-of-the-art developments of superlyophilic interfaces assisted thermal management are reported mainly from four perspectives around boiling, evaporation, radiation, and condensation. In particular, we discussed the unique role of superlyophilic interfaces during the heat transfer process, such as increasing bubble detachment rate, superspreading assisted efficient evaporation, directional liquid transfer in textiles during radiative cooling, and so forth. Finally, challenges of thermal management assisted by superlyophilic interfaces toward future applications are presented.

Keywords

Superhydrophilic / Boiling heat transfer / Evaporation / Radiative cooling / Condensation

Cite this article

Download citation ▾
Xianfeng Luo, Zhongpeng Zhu, Jun You, Ye Tian, Lei Jiang. Superlyophilic Interfaces Assisted Thermal Management. Chemical Research in Chinese Universities, 2022, 38(3): 643-652 DOI:10.1007/s40242-022-2063-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balandin A A. Nat. Mater., 2011, 10(8): 569.

[2]

Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T. Adv. Mater., 2015, 27(3): 428.

[3]

Kwon Y J, Park J B, Jeon Y P, Hong J Y, Park H S, Lee J U. Polymers(Basel), 2021, 13(8): 1312.

[4]

Peng L, Su B, Yu A, Jiang X. Cellulose, 2019, 26(11): 6415.

[5]

Patankar N A. Soft Matter, 2010, 6(8): 1613.

[6]

Jiang M N, Wang Y, Liu F Y, Du H H, Li Y C, Zhang H H, To S E, Wang S, Pan C, Yu J H, Quere D, Wang Z K. Nature, 2022, 601(7894): 17.

[7]

Peng Y C, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L L, Liu B F, Zhu Y Y, Zhou G M, Wu D S, Lee H R, Fan S H, Cui Y. Nat. Sustain., 2018, 1(2): 105.

[8]

Zhu Z, Chen Y, Xu Z, Yu Z, Luo X, Zhou J, Tian Y, Jiang L. iScience, 2021, 24(4): 102334.

[9]

Ze H J, Wu F F, Chen S H, Gao X F. Adv. Mater. Interfaces, 2020, 7(14): 6.

[10]

Miao D, Cheng N, Wang X, Yu J, Ding B. Nano Lett., 2022, 22(2): 680.

[11]

Oh J, Zhang R, Shetty P P, Krogstad J A, Braun P V, Miljkovic N. Adv. Funct. Mater., 2018, 28(16): 1707000.

[12]

Zhu Z P, Zheng S, Peng S, Zhao Y, Tian Y. Adv. Mater., 2017, 29(45): 1703120.

[13]

Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115(16): 8230.

[14]

Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431.

[15]

Fujishima A, Zhang X T, Tryk D A. Surf. Sci. Rep., 2008, 63(12): 515.

[16]

Zhu Z, Tian Y, Chen Y P, Gu Z, Wang S T, Jiang L. Angew. Chem. Int. Ed., 2017, 56(21): 5720.

[17]

Wu L, Dong Z, Kuang M, Li Y, Li F, Jiang L, Song Y. Adv. Funct. Mater., 2015, 25(15): 2237.

[18]

Son J, Kundu S, Verma L K, Sakhuja M, Danner A J, Bhatia C S, Yang H. Sol. Energy Mater. Sol. Cells, 2012, 98: 46.

[19]

England M W, Urata C, Dunderdale G J, Hozumi A. ACS Appl. Mater. Interfaces, 201, 8(7): 4318.

[20]

Zhang W B, Zhang F, Gao S J, Zhu Y Z, Li J Y, Jin J. Sep. Purif. Technol., 2015, 156: 207.

[21]

Zhang P C, Shao N, Qin L D. Adv. Mater., 2021, 33(46): 29.

[22]

Zhu H, Duan R L, Wang X D, Yang J L, Wang J H, Huang Y, Xia F. Nanoscale, 2018, 10(27): 13045.

[23]

Ye J M, Yin Q M, Zhou Y L. Thin Solid Films, 2009, 517(21): 6012.

[24]

Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 1999, 103(12): 2188.

[25]

Vorobyev A Y, Guo C. Opt. Express, 2010, 18(7): 6455.

[26]

Sakai N, Fujishima A, Watanabe T, Hashimoto K. J. Phys. Chem. B, 2003, 107(4): 1028.

[27]

Liu M J, Wang S T, Jiang L. Nat. Rev. Mater., 2017, 2(7): 17036.

[28]

Schutzius T M, Bayer I S, Jursich G M, Das A, Megaridis C M. Nanoscale, 2012, 4(17): 5378.

[29]

Adera S, Raj R, Enright R, Wang E N. Nature Communications, 2013, 4: 1.

[30]

Wiedenheft K F, Guo H A, Qu X, Boreyko J B, Liu F, Zhang K, Eid F, Choudhury A, Li Z, Chen C-H. Applied Physics Letters, 2017, 110(14): 141601.

[31]

Dai B, Li K, Shi L, Wan X, Liu X, Zhang F, Jiang L, Wang S. Advanced Materials, 2019, 31(41): 1904113.

[32]

Wu F F, Ze H J, Chen S H, Gao X F. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902.

[33]

Yin K, Wu Z, Wu J, Zhu Z, Zhang F, Duan J-A. Appl. Phys. Lett., 2021, 118(21): 211905.

[34]

Chen G, Wang Y, Qiu J, Cao J, Zou Y, Wang S, Jia D, Zhou Y. Mater. Des., 2021, 206: 109829.

[35]

Suroto B J, Kohno M, Takata Y. AIP Publishing LLC, 2018, 1927(1): 030047.

[36]

McClure E R, Carey V P. ACS Appl. Mater. Interfaces, 2020, 12(23): 26350.

[37]

Moze M, Senegacnik M, Gregorcic P, Hocevar M, Zupancic M, Golobic I. ACS Appl. Mater. Interfaces, 2020, 12(21): 24419.

[38]

Lim Y S, Hung Y M. Energy Convers. Manage., 2021, 244: 114522.

[39]

Lv L C, Li J. Appl. Therm. Eng., 2017, 122: 593.

[40]

Li S, Luo X, Li C. Surf. Coat. Technol., 2021, 422: 127519.

[41]

Tang Y, Yang X L, Li Y M, Zhu D. Adv. Mater. Interfaces, 2021, 8(13): 10.

[42]

Drelich J, Marmur A. Surf Innov., 2014, 2(4): 211.

[43]

Saneie N, Kulkarni V, Treska B, Fezzaa K, Patankar N, Anand S. Int. J. Heat Mass Transfer, 2021, 176: 121413.

[44]

Yang G, Liu J, Cheng X, Wang Y, Chu X, Mukherjee S, Terzis A, Schneemann A, Li W, Wu J, Fischer R A. J. Mater. Chem. A, 2021, 9(45): 25480.

[45]

Kim S, Kim H D, Kim H, Ahn H S, Jo H, Kim J, Kim M H. Exp. Therm. Fluid Sci., 2010, 34(4): 487.

[46]

Takata Y, Hidaka S, Masuda M, Ito T. Int. J. Energy Res., 2003, 27(2): 111.

[47]

Kondou C, Umemoto S, Koyama S, Mitooka Y. Appl. Therm. Eng., 2017, 118: 147.

[48]

Yang F H, Dai X M, Peles Y, Cheng P, Khan J, Li C. Int. J. Heat Mass Transfer, 2014, 68: 703.

[49]

Chen R, Lu M-C, Srinivasan V, Wang Z, Cho H H, Majumdar A. Nano Lett., 2009, 9(2): 548.

[50]

Shim D II, Choi G, Lee N, Kim T, Kim B S, Cho H H. ACS Appl. Mater. Interfaces, 2017, 9(20): 17595.

[51]

Kim B S, Shin S, Lee D, Choi G, Lee H, Kim K M, Cho H H. Int. J. Heat Mass Transfer, 2014, 70: 23.

[52]

Liu T Y, Li P L, Liu C W, Gau C. Int. J. Heat Mass Transfer, 2011, 54(1/3): 126.

[53]

Dai X, Huang X, Yang F, Li X, Sightler J, Yang Y, Li C. Appl. Phys. Lett., 2013, 102(16): 161605.

[54]

Wu S L, Quan L N, Huang Y T, Li Y T, Yang H C, Darling S B. ACS Appl Mater Interfaces, 2021, 13(33): 39513.

[55]

Xiao R, Maroo S C, Wang E N. Appl. Phys. Lett., 2013, 102(12): 123103.

[56]

Panda A, Pati A R, Kumar A, Mohapatra S S. Int. Commun. Heat Mass Transfer, 2019, 105: 19.

[57]

Hong S J, Pialago E J T, Ha H H, Kwon O K, Park C W. Int. J. Heat Mass Transfer, 2020, 157: 119935.

[58]

Ranjan R, Murthy J Y, Garimella S V. Int. J. Heat Mass Transfer, 2011, 54(1/3): 169.

[59]

Li L, Li Q, Feng Y, Chen K, Zhang J. ACS Appl. Mater. Interfaces, 2021, 14(1): 2360.

[60]

Zhang P, Lv F Y, Askounis A, Orejon D, Shen B. Int. J. Heat Mass Transfer, 2017, 109: 1229.

[61]

Hu T, Li L X, Yang Y F, Zhang J P. J. Mater. Chem. A, 2020, 8(29): 14736.

[62]

Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Nat. Commun., 2015, 6: 10103.

[63]

Wu L, Dong Z, Cai Z, Ganapathy T, Fang N X, Li C, Yu C, Zhang Y, Song Y. Nat. Commun., 2020, 11(1): 521.

[64]

Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson K E, Dames C, Prasher R, Fan S, Cui Y. Nat. Commun., 2021, 12(1): 6122.

[65]

Takata Y, Hidaka S, Cao J M, Nakamura T, Yamamoto H, Masuda M, Ito T. Energy, 2005, 30(2/4): 209.

[66]

Bai X H, Li Y G, Zhang F Y, Xu Y Q, Wang S F, Fu G S. Environ. Sci. Water Res. Technol., 2019, 5(11): 2041.

[67]

Guo L P, Gong J, Song C Y, Zhao Y L, Tan B E, Zhao Q, Jin S B. ACS Energy Lett., 2020, 5(4): 1300.

[68]

He J X, Zhang Z, Xiao C H, Liu F, Sun H X, Zhu Z Q, Liang W D, Li A. ACS Appl. Mater. Interfaces, 2020, 12(14): 16308.

[69]

Jaleh B, Shariati K, Khosravi M, Moradi A, Ghasemi S, Azizian S. Colloids Surf. A, 2019, 577: 323.

[70]

Liu Y Y, Qian L Q, Guo C, Jia X, Wang J W, Tang W H. J. Alloys Compd., 2009, 479(1/2): 532.

[71]

Aytug T, Simpson J T, Lupini A R, Trejo R M, Jellison G E, Ivanov I N, Pennycook S J, Hillesheim D A, Winter K O, Christen D K, Hunter S R, Haynes J A. Nanotechnology, 2013, 24(31): 315602.

[72]

Rathousky J, Rohlfing D F, Wark M, Brezesinski T, Smarsly B. Thin Solid Films, 2007, 515(16): 6541.

[73]

Song Y-N, Lei M-Q, Deng L-F, Lei J, Li Z-M. ACS Appl. Polym. Mater., 2020, 2(11): 4379.

[74]

Zeng S N, Pian S J, Su M Y, Wang Z N, Wu M Q, Liu X H, Chen M Y, Xiang Y Z, Wu J W, Zhang M N, Cen Q Q, Tang Y W, Zhou X H, Huang Z H, Wang R, Tunuhe A, Sun X Y, Xia Z G, Tian M W, Chen M, Ma X, Yang L, Zhou J, Zhou H M, Yang Q, Li X, Ma Y G, Tao G M. Science, 2021, 373(6555): 692.

[75]

Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y C, Xie J, Fan S H, Cui Y. Science, 201, 353(6303): 1019.

[76]

He J, Hoyano A. Energy Build., 2008, 40(6): 968.

[77]

Chen Y P, Dang B K, Fu J Z, Wang C, Li C C, Sun Q F, Li H Q. Nano Lett., 2021, 21(1): 397.

[78]

Bisetto A, Bortolin S, Del Col D. Exp. Therm. Fluid Sci., 2015, 68: 216.

[79]

Boyina K S, Mahvi A J, Chavan S, Park D, Kumar K, Lira M, Yu Y X, Gunay A A, Wang X F, Miljkovic N. Int. J. Heat Mass Transfer, 2019, 145: 13.

[80]

Ghosh A, Beaini S, Zhang B J, Ganguly R, Megaridis C M. Langmuir, 2014, 30(43): 13103.

[81]

Lou D, Liu Q, Mei S, Yang S, Zhai Z, Zheng Z, Cheng J, Liu D. Surface Technology, 2019, 48(11): 202.

[82]

Mahapatra P S, Ghosh A, Ganguly R, Megaridis C M. Int. J. Heat Mass Transfer, 201, 92: 877.

[83]

Moradi M, Chini S F, Rahimian M H. Aip Advances, 2020, 10(9): 6.

[84]

Yang K S, Lin K H, Tu C W, He Y Z, Wang C C. Int. J. Heat Mass Transfer, 2017, 115: 1032.

[85]

Zhou D, Ji X, Dai C, Xu J. J. Mech. Eng., 2018, 54(10): 182.

[86]

Wang H, Zhao X, Wang J, Wang Z, Wang D, Tian J. Case Stud. Therm. Eng., 2021, 27: 101319.

[87]

Ludwicki J M, Robinson F L, Steen P H. ACS Appl. Mater. Interfaces, 2020, 12(19): 22115.

[88]

Ji X B, Zhou D D, Dai C, Xu J L. Int. J. Heat Mass Transfer, 2019, 132: 52.

[89]

Kang J-Y, Kim T K, Lee G C, Jo H, Kim M H, Park H S. Ann. Nucl. Energy., 2019, 129: 375.

[90]

Kang J-Y, Lee G C, Kim M H, Moriyama K, Park H S. Int. J. Heat Mass Transfer, 2018, 117: 538.

[91]

Misyura S Y. Int. Commun. Heat Mass Transfer, 2020, 112: 104474.

[92]

Shen C, Zhang C, Gao M, Li X, Liu Y, Ren L, Moita A S. Int. J. Heat Fluid Flow, 2018, 74: 89.

[93]

Venkitesh V, Dash S. Int. J. Therm. Sci., 2022, 171: 107235.

[94]

Wang J X, Birbarah P, Docimo D, Yang T Y, Alleyne A G, Miljkovic N. Phys. Rev. E, 2021, 103(2): 14.

[95]

Xie S, Ma X, Kong H, Bai S, Jiang M, Zhao J. Int. J. Heat Mass Transfer, 2021, 176: 121475.

[96]

Xu W, Zhang P. Int. J. Heat Mass Transfer, 2020, 154: 119642.

[97]

Zhang J-Y, Fan L-W, Li J-Q, Yu Z-T. Int. J. Heat Mass Transfer, 2020, 162: 120364.

[98]

Zhang J-Y, Li J-Q, Jiang L-Y, Fan L-W, Yu Z-T. Int. J. Heat Mass Transfer, 2019, 138: 1117.

[99]

Benlattar M, Ibourk I, Adhiri R. Atmosphere, 2021, 12(9): 1198.

[100]

Liu C, Fan J, Bao H. Sol. Energy Mater. Sol. Cells, 2020, 216: 110700.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/