A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption

Jialong Song , Zitao Wang , Yaozu Liu , Chao Tuo , Yujie Wang , Qianrong Fang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 834 -837.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 834 -837. DOI: 10.1007/s40242-022-2060-7
Article

A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption

Author information +
History +
PDF

Abstract

Environmental pollution is one of the most severe problems facing today, including water pollution and the greenhouse effect. Therefore, developing materials with high-efficiency dyes adsorption and CO2 uptake is significant. Covalent organic frameworks(COFs), as a burgeoning class of crystalline porous polymers, present a promising application potential in areas related to pollution regulation due to their exciting surface properties. Herein, we report a 3D COF with a high specific surface area(BET about 2072 m2/g) by utilizing tetrahedral and rectangle building blocks connected through [4+4] imine condensation reactions to synthesize. The obtained COF not only can separate dyes from water effectively but also shows a remarkable CO2 uptake capacity. This research thus provides a promising material to remove dyes and adsorb CO2 in environmental remediation.

Keywords

Covalent organic framework / Dye adsorption / CO2 uptake

Cite this article

Download citation ▾
Jialong Song, Zitao Wang, Yaozu Liu, Chao Tuo, Yujie Wang, Qianrong Fang, Shilun Qiu. A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption. Chemical Research in Chinese Universities, 2022, 38(3): 834-837 DOI:10.1007/s40242-022-2060-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko M J. Nature, 2013, 495: 80.

[2]

Merel J, Clausse M, Meunier F. Ind. Eng. Chem. Res., 2008, 47: 209.

[3]

Cote A P, Benin A I, Ockwig N W, O’keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[4]

Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science, 2011, 332: 228.

[5]

Feng X, Ding X, Jiang D. Chem. Soc. Rev., 2012, 41: 6010.

[6]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[7]

Guan X, Chen F, Fang Q, Qiu S. Chem. Soc. Rev., 2020, 49: 1357.

[8]

Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. Engl., 2008, 47: 3450.

[9]

Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139: 4258.

[10]

Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc., 201, 138: 12332.

[11]

Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J. Am. Chem. Soc., 201, 138: 15790.

[12]

Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J. Am. Chem. Soc., 2014, 136: 6570.

[13]

Liang R-R, Cui F-Z, A R-H, Qi Q-Y, Zhao X. CCS Chemistry, 2020, 2: 139.

[14]

Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Chem. Soc. Rev., 2019, 48: 488.

[15]

Wang Z T, Li H, Yan S C, Fang Q R. Acta. Chim. Sin., 2020, 78: 63.

[16]

Chang J H, Xu G J, Li H, Fang Q R. Chem. J. Chinese Universities, 2020, 41(7): 1609.

[17]

Demessence A, D’alessandro D M, Foo M L, Long J R. J. Am. Chem. Soc., 2009, 131: 8784.

[18]

Luo Y, Li B, Wang W, Wu K, Tan B. Adv. Mater., 2012, 24: 5703.

[19]

Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou H C. J. Am. Chem. Soc., 2011, 133: 18126.

[20]

Liu Y, Wang Y, Li H, Guan X, Zhu L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. Chem. Sci., 2019, 10: 10815.

[21]

Materials Studio Ver. 7.0, Accelrys Inc., Diego, Ca S

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/