Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light

Hao Peng , Jiaxin Jiang , Yifang Liu , Xiang Wang , Wenwang Li , Gaofeng Zheng

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1475 -1481.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1475 -1481. DOI: 10.1007/s40242-022-2056-3
Article

Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light

Author information +
History +
PDF

Abstract

Asynchronized surface modification method based on coaxial electrospinning was developed to fabricate high-efficiency photodegradative nanofiber for water purification. TiO2 nanoparticles assembled uniformly on the surface of polycaprolactone(PCL) nanofibers to form composite nanofibers through one step process. The maximal content of Ti element was 25.6%(mass fraction) in the PCL/TiO2 composite nanofibrous membrane, which exhibited hydrophilicity and excellent photodegradation under visible light in water. The Rhodamine B dye degraded 96.17% in 120 min under visible light by the PCL/TiO2 composite membrane. The adsorption behavior fitted Langmuir model well and indicated chemical related adsorption. This PCL/TiO2 composite nanofibrous membrane has super degradation properties and displays great application potential to environmental protection.

Keywords

Nanoparticle / Environmental degradation / Surface property / Electrospinning

Cite this article

Download citation ▾
Hao Peng, Jiaxin Jiang, Yifang Liu, Xiang Wang, Wenwang Li, Gaofeng Zheng. Surfaced-modified TiO2 Nanofibers with Enhanced Photodegradation Under Visible Light. Chemical Research in Chinese Universities, 2022, 38(6): 1475-1481 DOI:10.1007/s40242-022-2056-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kant R. Natural Science, 2012, 4(1): 22.

[2]

Gupta V K, Suhas Journal of Environmental Management, 2009, 90(8): 2313.

[3]

Pourreza N, Rastegarzadeh S, Larki A. Talanta, 2008, 77(2): 733.

[4]

Binnie C, Kimber M, Smethurst G. Basic Water Treatment, 2002, Cambridge: Royal Society of Chemistry

[5]

Faust S D, Aly O M. Chemistry of Water Treatment, 2018, Boca Raton: CRC Press

[6]

Hendricks D. Fundamentals of Water Treatment Unit Processes: Physical, Chemical, Biological, 2016, Boca Raton: CRC Press.

[7]

Ali I, Gupta V. Nature Protocols, 200, 1(6): 2661.

[8]

Lee A, Elam J W, Darling S B. Environmental Science: Water Research & Technology, 201, 2(1): 17.

[9]

Bucs S S, Farhat N, Kruithof J C, Picioreanu C, van Loosdrecht M C M, Vrouwenvelder J S. Desalination, 2018, 434: 189.

[10]

Ademola Bode-Aluko C, Pereao O, Kyaw H H, Al-Naamani L, Al-Abri M Z, Tay Zar Myint M, Rossouw A, Fatoba O, Petrik L, Dobretsov S. Materials Science and Engineering: B, 2021, 264: 114913.

[11]

Picos-Corrales L A, Sarmiento-Sánchez J I, Ruelas-Leyva J P, Crini G G, Hermosillo-Ochoa E, Gutierrez-Montes J A. ACS Omega, 2020, 5(8): 3943.

[12]

Heck K N, Garcia-Segura S, Westerhoff P, Wong M S. Accounts of Chemical Research, 2019, 52(4): 906.

[13]

Gitis V, Hankins N. Journal of Water Process Engineering, 2018, 25: 34.

[14]

Malini M, Thirumavalavan M, Yang W Y, Lee J F, Annadurai G. International Journal of Biological Macromolecules, 2015, 80: 121.

[15]

Fujishima A, Rao T N, Tryk D A. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1.

[16]

Zhang M, Chen C, Ma W, Zhao J. Angewandte Chemie International Edtion, 2008, 47(50): 9730.

[17]

Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. Nanoscale, 2011, 3(7): 2943.

[18]

Ghafuri H, Dehghani M, Rashidizadeh A, Rabbani M. Optik, 2019, 179: 646.

[19]

Wang F, Min S, Han Y, Feng L. Superlattices and Microstructures, 2010, 48(2): 170.

[20]

Li W, Li D, Lin Y, Wang P, Chen W, Fu X, Shao Y. The Journal of Physical Chemistry C, 2012, 116(5): 3552.

[21]

Karagoz S, Kiremitler N B, Sakir M, Salem S, Onses M S, Sahmetlioglu E, Ceylan A, Yilmaz E. Ecotoxicology and Environmental Safety, 2020, 188: 109856.

[22]

Pahasup-Anan T, Suwannahong K, Dechapanya W, Rangkupan R. Journal of Environmental Sciences-China, 2018, 72: 13.

[23]

Cozzoli P D, Fanizza E, Comparelli R, Curri M L, Agostiano A, Laub D. The Journal of Physical Chemistry B, 2004, 108(28): 9623.

[24]

Tryba B, Morawski A W, Inagaki M, Toyoda M. Applied Catalysis B: Environmental, 200, 63(3/4): 215.

[25]

Wang H, You T, Shi W, Li J, Guo L. The Journal of Physical Chemistry C, 2012, 116(10): 6490.

[26]

Ming H, Ma Z, Huang H, Lian S, Li H, He X, Yu H, Pan K, Liu Y, Kang Z. Chem Commun(Camb), 2011, 47(28): 8025.

[27]

Zheng G, Peng H, Jiang J, Kang G, Liu J, Zheng J, Liu Y. Chem. Res. Chinese Universities, 2021, 37(3): 571.

[28]

Zhu S, Nie L. Journal of Industrial and Engineering Chemistry, 2021, 93: 28.

[29]

Scaffaro R, Lopresti F, Maio A, Botta L, Rigogliuso S, Ghersi G. Composites Part A: Applied Science and Manufacturing, 2017, 92: 97.

[30]

S N, Joseph S. Journal of Water Process Engineering, 2018, 21: 61.

[31]

Thamaphat K, Limsuwan P, Ngotawornchai B. Agriculture and Natural Resources, 2008, 42(5): 357.

[32]

Pais V., Navarro M., Guise C., Martins R., Fangueiro R., Textile Research Journal, 2021, DOI: https://doi.org/10.1177/00405175211010669

[33]

Baranowska-Korczyc A, Warowicka A, Jasiurkowska-Delaporte M, Grześkowiak B, Jarek M, Maciejewska B M, Jurga-Stopa J, Jurga S. RSC Advances, 201, 6(24): 19647.

[34]

Tu H, Li D, Yi Y, Liu R, Wu Y, Dong X, Shi X, Deng H. Composites Communications, 2019, 15: 58.

[35]

Saricam C, Okur N, Göcek İ. Journal of Industrial Textiles, 2019, 50(3): 398.

[36]

Pan L, Zou J J, Zhang X, Wang L. Journal of the American Chemical Society, 2011, 133(26): 10000.

[37]

Chen X, Mao S S. Chemical Reviews, 2007, 107(7): 2891.

[38]

Deskins N A, Rousseau R, Dupuis M. The Journal of Physical Chemistry C, 2009, 113(13): 14583.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/