Friction of MoO3 Nanoflakes on Graphite Surface with an Ace-like Intercalation Layer

Dawei Wei , Guangjie Zhang , Xiaoquan Lu , Xiaohui Qiu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 769 -773.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 769 -773. DOI: 10.1007/s40242-022-2050-9
Article

Friction of MoO3 Nanoflakes on Graphite Surface with an Ace-like Intercalation Layer

Author information +
History +
PDF

Abstract

How water layer adsorbed on solid surface under ambient conditions affects the interfacial friction is a fundamental question for understanding the friction and lubrication phenomena in practical system. We investigate the formation of ice-like(IL) water layers on the hydrophobic surface of graphite with partially covered MoO3 nanoflakes(NFs) using atomic force microscopy(AFM) based techniques. The IL water layers are found surrounding the MoO3 NFs and also intercalated at the MoO3/graphite interface, as proved by thickness measurements as well as local adhesion force and surface potential mappings. AFM manipulations carried out on MoO3 NFs on graphite show that the presence of the IL water layers increases the frictional resistance of the interface. Comparing the results on continuous and discontinuous IL water layers, we can identify the different sliding interfaces in the two scenarios. The increased friction for MoO3 NFs sliding on graphite with an intercalated water layer is attributed to the energy dissipation originated from the metastable nature of the IL layers.

Keywords

Friction / Ice-like water / MoO3 / Graphite

Cite this article

Download citation ▾
Dawei Wei, Guangjie Zhang, Xiaoquan Lu, Xiaohui Qiu. Friction of MoO3 Nanoflakes on Graphite Surface with an Ace-like Intercalation Layer. Chemical Research in Chinese Universities, 2022, 38(3): 769-773 DOI:10.1007/s40242-022-2050-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park J Y, Salmeron M. Chemical Reviews, 2014, 114(1): 67.

[2]

Urbakh M, Meyer E. Nat. Mater., 2010, 9(1): 8.

[3]

Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W. Science, 2010, 328(5974): 76.

[4]

Filleter T, McChesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R. Physical Review Letters, 2009, 102(8): 086102.

[5]

Lin H, Rauf A, Severin N, Sokolov I M, Rabe J P. Journal of Colloid and Interface Science, 2019, 540: 142.

[6]

Khare H S, Burris D L. Tribology Letters, 2013, 53(1): 329.

[7]

Lee H, Ko J H, Choi J S, Hwang J H, Kim Y H, Salmeron M, Park J Y. The Journal of Physical Chemistry Letters, 2017, 8(15): 3482.

[8]

Kimmel G A, Matthiesen J, Baer M, Mundy C J, Petrik N G, Smith R S, Dohnalek Z, Kay B D. J. Am. Chem. Soc., 2009, 131(35): 12838.

[9]

Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X-Z, Francisco J S, Zeng X C, Xu L-M, Wang E-G, Jiang Y. Nature, 2020, 577(7788): 60.

[10]

Yan B, Zheng Z, Zhang J, Gong H, Shen Z, Huang W, Yu T. The Journal of Physical Chemistry C, 2009, 113(47): 20259.

[11]

Kim J H, Hyun C, Kim H, Dash J K, Ihm K, Lee G H. Nano Letters, 2019, 19(12): 8868.

[12]

Hutter J L, Bechhoefer J. Review of Scientific Instruments, 1993, 64(7): 1868.

[13]

Li Q, Kim K S, Rydberg A. Review of Scientific Instruments, 200, 77(6): 065105.

[14]

Kalantar-Zadeh K, Tang J, Wang M, Wang K L, Shailos A, Galatsis K, Kojima R, Strong V, Lech A, Wlodarski W, Kaner R B. Nanoscale, 2010, 2(3): 429.

[15]

Greiner M T, Chai L, Helander M G, Tang W-M, Lu Z-H. Advanced Functional Materials, 2013, 23(2): 215.

[16]

Cai L, Mcclellan C J, Koh A L, Li H, Yalon E, Pop E, Zheng X. Nano Letters, 2017, 77(6): 3854.

[17]

Bampoulis P, Teernstra V J, Lohse D, Zandvliet H J W, Poelsema B. The Journal of Physical Chemistry C, 201, 120(47): 27079.

[18]

Zheng Y, Su C, Lu J, Loh K P. Angew. Chem. Int. Ed. Engl., 2013, 52(33): 8708.

[19]

Chu E-D, Wang P-H, Hong Y-Z, Woon W-Y, Chiu H-C. Nanotechnology, 2019, 30(4): 045706.

[20]

Dietzel D, Feldmann M, Fuchs H, Schwarz U D, Schirmeisen A. Applied Physics Letters, 2009, 95(5): 053104.

[21]

Sheehan P E, Lieber C M. Science, 199, 272(5265): 1158.

[22]

Annamalai M, Gopinadhan K, Han S A, Saha S, Park H J, Cho E B, Kumar B, Patra A, Kim S-W, Venkatesan T. Nanoscale, 201, 8(10): 5764.

[23]

Cai H, Guo Y, Guo W. Physical Chemistry Chemical Physics, 2018, 20(6): 4137.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/