Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release

Liquan Chen , Dawei Li , Jinghan Ren , Yameng Li , Dong Gao , Chengfen Xing

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1467 -1474.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1467 -1474. DOI: 10.1007/s40242-022-2047-4
Article

Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release

Author information +
History +
PDF

Abstract

Conjugated porous polymers exhibit considerable advantage as attractive candidate for carbon dioxide(CO2) capture. However, the regeneration of the CO2 still faces the problem of high energy cost. Here we synthesize a near-infrared region(NIR) light responsive conjugated porous polymer(PDPP-Gu) [DPP=3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione] by constructing porous amorphous networks with a side chain engineering strategy to regulate CO2 adsorption and release through photothermal conversion. The PDPP-Gu is featured by a torsional conjugated backbone as well as a functional side chain of guanidino group. The donor-acceptor configuration of PDPP-Gu afforded strong absorption in the NIR and an excellent photothermal conversion capability of up to 48.8%, as well as a high surface energy. Moreover, guanidine modified side chain further enhanced the CO2-polymers interactions, resulting in a high CO2 selective adsorption capacity(0.8 mmol/g) at 273 K, 1 bar(1 bar=105 Pa). The adsorbed CO2 can be released under NIR light irradiation. This strategy of molecule design combined the dual features of photothermal conversion and gas adsorption, which is beneficial for the development of materials to dynamically control the adsorption and release of CO2 through NIR light.

Keywords

Conjugated porous polymer / Carbon dioxide / Controllable adsorption and release / Near-infrared response / Photothermal effect

Cite this article

Download citation ▾
Liquan Chen, Dawei Li, Jinghan Ren, Yameng Li, Dong Gao, Chengfen Xing. Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release. Chemical Research in Chinese Universities, 2022, 38(6): 1467-1474 DOI:10.1007/s40242-022-2047-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jung J P, Park C H, Lee J H, Bae Y-S, Kim J H. Chemical Engineering Journal, 2017, 313: 1615.

[2]

Sharma P, Choi S-H, Park S-D, Baek I-H, Lee G-S. Chemical Engineering Journal, 2012, 181/182: 834.

[3]

Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller T E. Energy & Environmental Science, 2012, 5: 7281.

[4]

Wang H, Jiang D, Huang D, Zeng G, Xu P, Lai C, Chen M, Cheng M, Zhang C, Wang Z. Journal of Materials Chemistry A, 2019, 7: 22848.

[5]

Kupgan G, Abbott L J, Hart K E, Colina C M. Chemical Reviews, 2018, 118: 5488.

[6]

Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Többens D M, Zander S, Pillai R S, Maurin G, Coudert F-X, Kaskel S. Nature, 201, 532: 348.

[7]

Creamer A E, Gao B. Environmental Science & Technology, 201, 50: 7276.

[8]

Tiainen T., Mannisto J. K., Tenhu H., Hietala S., Langmuir, 2021, doi: https://doi.org/10.1021/acs.Langmuir.lc02321

[9]

Huang R, Hill M R, Babarao R, Medhekar N V. The Journal of Physical Chemistry C, 201, 120: 16658.

[10]

Zhou X, Wan L, Long Z, Li D, Liang D. Energy & Fuels, 2019, 33: 6727.

[11]

Zhou X, Liang D. Chemical Engineering Journal, 2019, 378: 122128.

[12]

Olajire A A. Journal of CO2 Utilization, 2017, 17: 137.

[13]

Gao H, Li Q, Ren S. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 33.

[14]

Ozdemir J., Mosleh I., Abolhassani M., Greenlee L. F., Beitle R. R., Beyzavi M. H., Frontiers in Energy Research, 2019, 7, Article 77

[15]

Zeng Y, Zou R, Zhao Y. Advanced Materials, 201, 28: 2855.

[16]

Kaleeswaran D, Antony R, Sharma A, Malani A, Murugavel R. ChemPlusChem, 2017, 82: 1253.

[17]

Li Y, Zhang J, Zuo K, Li Z, Wang Y, Hu H, Zeng C, Xu H, Wang B, Gao Y. Catalysts, 2021, 11: 1133.

[18]

Wang Y, Kang C, Zhang Z, Usadi A K, Calabro D C, Baugh L S, Yuan Y D, Zhao D. ACS Sustainable Chemistry & Engineering, 2022, 10: 332.

[19]

Kim J, Lin L-C, Swisher J A, Haranczyk M, Smit B. Journal of the American Chemical Society, 2012, 134: 18940.

[20]

Wang B, Côté A P, Furukawa H, O’Keeffe M, Yaghi O M. Nature, 2008, 453: 207.

[21]

To J W F, He J, Mei J, Haghpanah R, Chen Z, Kurosawa T, Chen S, Bae W-G, Pan L, Tok J B H, Wilcox J, Bao Z. Journal of the American Chemical Society, 201, 138: 1001.

[22]

Gopinath K P, Vo D-V N, Gnana Prakash D, Adithya Joseph A, Viswanathan S, Arun J. Environmental Chemistry Letters, 2021, 19: 557.

[23]

Durá G, Budarin V L, Castro-Osma J A, Shuttleworth P S, Quek S C Z, Clark J H, North M. Angewandte Chemie International Edition, 201, 55: 9173.

[24]

Wang D, Liao S, Zhang S, Wang Y. ChemSusChem, 2017, 10: 2573.

[25]

Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Microporous and Mesoporous Materials, 2008, 116: 358.

[26]

Zhao C, Chen X, Zhao C. Energy & Fuels, 2010, 24: 1009.

[27]

Liu Y-G, Liu G, Tan P, Gu C, Li J-J, Liu X-Q, Sun L-B. Chemical Engineering Journal, 2021, 420: 130490.

[28]

Zhao H-Y, Cao Y, Lineberry Q, Pan W-P. Journal of Thermal Analysis and Calorimetry, 2011, 106: 199.

[29]

Cheng P, Li G, Zhan X, Yang Y. Nature Photonics, 2018, 12: 131.

[30]

He Y, Cao Y, Wang Y. Asian Journal of Organic Chemistry, 2018, 7: 2201.

[31]

Wang Y, Meng H-M, Song G, Li Z, Zhang X-B. ACS Applied Polymer Materials, 2020, 2: 4258.

[32]

Guo B, Sheng Z, Hu D, Li A, Xu S, Manghnani P N, Liu C, Guo L, Zheng H, Liu B. ACS Nano, 2017, 11: 10124.

[33]

Xiao L, Chen X, Yang X, Sun J, Geng J. ACS Applied Polymer Materials, 2020, 2: 4273.

[34]

Zhang G., Ma S., Wang W., Zhao Y., Ruan J., Tang L., Lu H., Qiu L., Ding Y., Frontiers in Chemistry, 2019, 7

[35]

Li B., Ren S., Gao D., Li N., Wu M., Yuan H., Zhou M., Xing C., Advanced Healthcare Materials, 2021, n/a, 2102506

[36]

Pei S. International Journal of Electrochemical Science, 2019, 14: 6643.

[37]

Goker S, Hizalan G, Aktas E, Kutkan S, Cirpan A, Toppare L. New Journal of Chemistry, 201, 40: 10455.

[38]

Huang F, Chen K-S, Yip H-L, Hau S K, Acton O, Zhang Y, Luo J, Jen A K Y. Journal of the American Chemical Society, 2009, 131: 13886.

[39]

Guo Y, Xia D, Liu B, Wu H, Li C, Tang Z, Xiao C, Li W. Macromolecules, 2019, 52: 8367.

[40]

Dupont A, Eastoe J, Martin L, Steytler D C, Heenan R K, Guittard F, Taffin de Givenchy E. Langmuir, 2004, 20: 9960.

[41]

Lee J J, Cummings S D, Beckman E J, Enick R M, Burgess W A, Doherty M D, O’Brien M J, Perry R J. The Journal of Supercritical Fluids, 2017, 119: 17.

[42]

Rizvi A, Tabatabaei A, Barzegari M R, Mahmood S H, Park C B. Polymer, 2013, 54: 4645.

[43]

Lee J H, Jung J P, Jang E, Lee K B, Kang Y S, Kim J H. Journal of Membrane Science, 201, 502: 191.

[44]

Plonka A M, Banerjee D, Woerner W R, Zhang Z, Nijem N, Chabal Y J, Li J, Parise J B. Angewandte Chemie International Edition, 2013, 52: 1692.

[45]

Kanoo P, Reddy S K, Kumari G, Haldar R, Narayana C, Balasubramanian S, Maji T K. Chemical Communications, 2012, 48: 8487.

[46]

Rao K V, Mohapatra S, Kulkarni C, Maji T K, George S J. Journal of Materials Chemistry, 2011, 21: 12958.

[47]

Bhunia A, Esquivel D, Dey S, Fernández-Terán R, Goto Y, Inagaki S, Van Der Voort P, Janiak C. Journal of Materials Chemistry A, 201, 4: 13450.

[48]

Saleque A. M., Nowshin N., Ivan M. N. A. S., Ahmed S., Tsang Y. H., Solar RRL, 2022, 2100986

[49]

Guan X, Ma Y, Li H, Yusran Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Journal of the American Chemical Society, 2018, 140: 4494.

[50]

Gui B, Liu X, Cheng Y, Zhang Y, Chen P, He M, Sun J, Wang C. Angewandte Chemie International Edition, 2022, 61: e202113852.

[51]

Neti V S P K, Wang J, Deng S, Echegoyen L. RSC Advances, 2015, 5: 10960.

[52]

Li Z, Zhi Y, Feng X, Ding X, Zou Y, Liu X, Mu Y. Chemistry: A European Journal, 2015, 21: 12079.

[53]

Tarzia A, Thornton A W, Doonan C J, Huang D M. The Journal of Physical Chemistry C, 2017, 121: 16381.

[54]

Trewin A, Cooper A I. Angewandte Chemie International Edition, 2010, 49: 1533.

[55]

Jiang J-X, Trewin A, Su F, Wood C D, Niu H, Jones J T A, Khimyak Y Z, Cooper A I. Macromolecules, 2009, 42: 2658.

[56]

Suresh V M, Bonakala S, Roy S, Balasubramanian S, Maji T K. The Journal of Physical Chemistry C, 2014, 118: 24369.

[57]

Li R, Zhang C, Cui C-X, Hou Y, Niu H, Tan C-H, Yang X, Huang F, Jiang J-X, Zhang Y. Polymer, 2022, 240: 124509.

[58]

Qian C, Zhou W, Qiao J, Wang D, Li X, Teo W L, Shi X, Wu H, Di J, Wang H, Liu G, Gu L, Liu J, Feng L, Liu Y, Quek S Y, Loh K P, Zhao Y. Journal of the American Chemical Society, 2020, 142: 18138.

[59]

Ichikawa M, Wakabayashi K, Hayashi S, Yokoyama N, Koyama T, Taniguchi Y. Organic Electronics, 2010, 11: 1966.

[60]

Bai Y, Nguyen L, Song Z, Peng S, Lee J, Zheng N, Kapoor I, Hagler L D, Cai K, Cheng J, Chan H Y E, Zimmerman S C. Journal of the American Chemical Society, 201, 138: 9498.

[61]

Roper D K, Ahn W, Hoepfner M. J. Phys. Chem. C, 2007, 111(a): 3636.

[62]

Yao J, Yu C, Liu Z, Luo H, Yang Y, Zhang G, Zhang D. Journal of the American Chemical Society, 201, 138: 173.

[63]

Khelifa A, Benchehida L, Derriche Z. Journal of Colloid and Interface Science, 2004, 278: 9.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/