Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property

Anqi Shang , Lele Zhao , Zhenhua Li , Zhuang Cheng , Haixu Jin , Zijun Feng , Zhijun Chen , Haiquan Zhang , Ping Lu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1461 -1466.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1461 -1466. DOI: 10.1007/s40242-022-2046-5
Article

Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property

Author information +
History +
PDF

Abstract

Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high T g of 110 °C and T d of 385 °C and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.

Keywords

Near-infrared emission / Aggregation-induced emission / High solid-state efficiency / Organic light-emitting diode

Cite this article

Download citation ▾
Anqi Shang, Lele Zhao, Zhenhua Li, Zhuang Cheng, Haixu Jin, Zijun Feng, Zhijun Chen, Haiquan Zhang, Ping Lu. Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property. Chemical Research in Chinese Universities, 2022, 38(6): 1461-1466 DOI:10.1007/s40242-022-2046-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen Q F, Xu R H, Wang Z, Zhao T Y, Zhou Y, Xu Y Z, Yang Z W, Lei M, Meng L J, Dang D F. Chem. Res. Chinese Universities, 2021, 37(1): 143.

[2]

Wang J F, Liu Y S, Morsch M, Lu Y Q, Ping S G, Han L L, Wang Z J, Chen X Y, Song C H, Liu S J, Shi B Y, Tang B Z. Adv. Mater., 2022, 34: 2106082.

[3]

Liu W, Zhang Y H, Qi J, Qian J, Tang B Z. Chem. Res. Chinese Universities, 2021, 37(1): 171.

[4]

Zou J H, Li L, Zhu J W, Li X C, Yang Z, Huang W, Chen X Y. Adv. Mater., 2021, 33: 2103627.

[5]

Paisley N R, Halldorson S V, Tran M V, Gupta R, Kamal S, Algar W R, Hudson Z M. Angew. Chem. Int. Ed., 2021, 60: 18630.

[6]

Li M Q, Ma H, Shi C, Zhang H, Long S R, Sun W, Du J J, Fan J L, Peng X J. Chem. Res. Chinese Universities, 2021, 37(4): 925.

[7]

Bünzli J C G, Eliseeva S V. J. Rare Earths, 2010, 28: 824.

[8]

Ma Y, Zhang Y, Yu W W. J. Mater. Chem. C, 2019, 7: 13662.

[9]

Koyama S, Inaba Y C, Kasano M, Murata T. IEEE Trans. Electron Devices, 2008, 55: 754.

[10]

Stender B, Völker S F, Lambert C, Pflaum J. Adv. Mater., 2013, 25: 2943.

[11]

Choi I, Kim J H, Jang J S. Sensors(Basel, Switzerland), 2018, 18: 4151.

[12]

Bezvikonnyi O, Gudeika D, Volyniuk D, Grazulevicius J V, Bagdziunas G. New J. Chem., 2018, 42: 12492.

[13]

Wang Y Y, Song W X, Zhou L, Liang W T, Mu H C, Huang J H, Su J H. New J. Chem., 2018, 42: 17975.

[14]

Wang X Y, Wu Y, Wu C M, Li Y X, Wang D D, Wu Y, Ning S Y, Jiao B, Wu Z X. New J. Chem., 2022, 46: 419.

[15]

Lee S E, Oh J H, Baek H J, Kim S, Do Y R, Kim Y K. J. Lumin., 2019, 207: 195.

[16]

Cheng J F, Pan Z H, Zhang K, Zhao Y, Wang C K, Ding L, Fung M K, Fan J. Chem. Eng. J., 2022, 430: 132744.

[17]

Brodeur J, Hu L, Malinge A, Eizner E, Skene W G, Kéna-Cohen S. Adv. Opt. Mater., 2019, 7: 1901144.

[18]

Xiang H F, Cheng J H, Ma X F, Zhou X G, Chruma J J. Chem. Soc. Rev., 2013, 42: 6128.

[19]

Du B. S., Liao J. L., Huang M. H., Lin C. H., Lin H. W., Chi Y., Pan H. A., Fan G. L., Wong K. T., Lee G. H., Chou P. T., Adv. Funct. Mater., 2012, 22, 3491

[20]

Cheng J F, Kong F C, Zhang K, Cai J H, Zhao Y, Wang C K, Fan J, Liao L S. Chem. Eng. J., 2022, 430: 132822.

[21]

Zeng X, Huang Y H, Gong S L, Yin X G, Lee W K, Xiao X, Zhang Y, Zeng W X, Lu C H, Lee C C, Dong X Q, Zhong C, Wu C C, Yang C L. Sci. China Mater., 2020, 64: 920.

[22]

Li Z, Yang D Z, Han C M, Zhao B J, Wang H Q, Man Y, Ma P, Chang P, Ma D G, Xu H. Angew. Chem. Int. Ed., 2021, 60: 14846.

[23]

Balijapalli U, Lee Y T, Karunathilaka B S B, Tumen-Ulzii G, Auffray M, Tsuchiya Y C, Nakanotani H, Adachi C. Angew. Chem. Int. Ed., 2021, 60: 19364.

[24]

Andruleviciene V, Leitonas K, Volyniuk D, Sini G, Grazulevicius J V, Getautis V. Chem. Eng. J., 2021, 417: 127902.

[25]

He J L, Kong F C, Sun B J, Wang X J, Tian Q S, Fan J, Liao L S. Chem. Eng. J., 2021, 424: 130407.

[26]

He X, Gao L, Liu H, Liu F T, Jiang D Y, Du C Y, Sun C L, Lu P. Chem. Eng. J., 2021, 404: 127055.

[27]

Shang AQ, Lu T, Liu H, Du C Y, Liu F T, Jiang D Y, Min J R, Zhang H Q, Lu P. J. Mater. Chem. C, 2021, 9: 7392.

[28]

Gong X, Lu C H, Lee W K, Li P, Huang Y, Chen H, Z, Zhan L, Wu C C, Gong S L, Yang C L. Chem. Eng. J., 2021, 405: 126663.

[29]

Zhang Y W, Zhang D D, Huang T Y, Gillett AJ, Liu Y, Hu D P, Cui L S, Bin Z Y, Li G M, Wei J B, Duan L. Angew. Chem. Int. Ed., 2021, 60: 20498.

[30]

Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman A P. Angew. Chem. Int. Ed., 201, 55: 5739.

[31]

Li C L, Duan R H, Liang B Y, Han G C, Wang S P, Ye K Q, Liu Y, Yi Y P, Wang Y. Angew. Chem. Int. Ed., 2017, 56: 11525.

[32]

Liu Y L, Man X X, Bai Q, Liu H, Liu P Y, Fu Y, Hu D H, Lu P, Ma Y G. CCS Chemistry, 2021, 4: 214.

[33]

Lee J H, Han G W, Kim K J, Lee H, Kim Y K, Yoon S S. J. Nanosci. Nanotechnol., 2021, 21: 4665.

[34]

Jang B, Han G, Kim K, Lee H, Kim Y, Seungsoo J. Nanosci. Nanotechnol., 2021, 21: 3914.

[35]

Han X, Bai Q, Yao L, Liu H, Gao Y, Li J Y, Liu L, Liu Y L, Li X X, Lu P, Yang B. Adv. Funct. Mater., 2015, 25: 7521.

[36]

Kim J U, Reddy S S, Cui L S, Nomura H, Hwang S, Kim D H, Nakanotani H, Jin S H, Adachi C. J. Lumin., 2017, 190: 485.

[37]

Li N, Fang Y, Li L, Zhao H, Quan Y, Ye S, Fan Q, Huang W. J. Lumin., 2018, 199: 465.

[38]

Wang J F, He Y W, Guo S H, Ali M U, Zhao C B, Zhu Y N, Wang T, Wang Y R, Miao J S, Wei G D, Meng H. ACS Appl. Mater. Interfaces, 2021, 13: 12250.

[39]

Li J Y, Shan T, Yao M M, Gao Y, Han X, Yang B, Lu P. J. Mater. Chem. C, 2017, 5: 2552.

[40]

Valentin H K F, Neil J F, Benjamin B, Clarissa F, Anto R I, Joseph C, Alexander L K, Peter J S. J. Mater. Chem. C, 2019, 7: 3934.

[41]

Wang Y Y, Tong K N, Zhang K, Lu C H, Chen X, Liang J X, Wang C K, Wu C C, Fung M K, Fan J. Mater. Horiz., 2021, 8: 1297.

[42]

Rodriguez-Seco C, Mendez M, Roldan-Carmona C, Cabau L, Asiri A M, Nazeeruddin M K, Palomares E. ACS Appl. Mater. Interfaces, 2020, 12: 32712.

[43]

Wu C, Shi C S, Zheng Y Y, Zhang J Y, Wang Y F, Sun N, Wang Q, Lu Z H. Chem. Eng., 2022, 431: 133249.

[44]

Rietsch P, Sobottka S, Hoffmann K, Hildebrandt P, Sarkar B, Resch-Genger U, Eigler S. ChemPhotoChem, 2020, 4: 668.

[45]

Balijapalli U, Nagata R, Yamada N, Nakanotani H, Tanaka M, D’Aleo A, Placide V, Mamada M, Tsuchiya Y, Adachi C. Angew. Chem. Int. Ed., 2021, 60: 8477.

[46]

Du C Y, Liu F T, Liu H, He X, Jiang D Y, Feng Z J, Gao L, Lu P. J. Mater. Chem. C, 2020, 8: 14446.

[47]

Zhou C, Chen W C, Liu H, Cao X, Li N, Zhang Y, Lee C S, Yang C L. J. Mater. Chem. C, 2020, 8: 9639.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/