Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials

Yuancheng Ji , Jiayun Xu , Hongcheng Sun , Junqiu Liu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 688 -697.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 688 -697. DOI: 10.1007/s40242-022-2045-6
Review

Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials

Author information +
History +
PDF

Abstract

The development of green and renewable energy sources is in high demand due to energy shortage and productivity development. Artificial photosynthesis(AP) is one of the most effective ways to address the energy shortage and the greenhouse effect by converting solar energy into hydrogen and other carbon-based high value-added products through the understanding of the mechanism, structural analysis, and functional simulation of natural photosynthesis. In this review, the development of AP from natural catalysts to artificial catalysts is described, and the processes of oxygen production, hydrogen production, and carbon fixation are sorted out to understand the properties and correlations of the core functional components in natural photosynthesis, to provide a better rational design and optimization for further development of advanced heterogeneous materials.

Keywords

Artificial photosynthesis / Oxygen evolution reaction / Hydrogen evolution reaction / CO2 reduction reaction / Heterogeneous material

Cite this article

Download citation ▾
Yuancheng Ji, Jiayun Xu, Hongcheng Sun, Junqiu Liu. Artificial Photosynthesis(AP): From Molecular Catalysts to Heterogeneous Materials. Chemical Research in Chinese Universities, 2022, 38(3): 688-697 DOI:10.1007/s40242-022-2045-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dau H, Fujita E, Sun L. Chemsuschem, 2017, 10: 4228.

[2]

Kärkäs M D, Verho O, Johnston E V, Åkermark B. Chem. Rev., 2014, 114: 11863.

[3]

Haegel N M, Atwater H, Barnes T, Breyer C, Burrell A, Chiang Y-M, Wolf S D, Dimmler B, Feldman D, Glunz S, Goldschmidt J C, Hochschild D, Inzunza R, Kaizuka I, Kroposki B, Kurtz S, Leu S, Margolis R, Matsubara K, Metz A, Metzger W K, Morjaria M, Niki S, Nowak S, Peters I M, Philipps S, Reindl T, Richter A, Rose D, Sakurai K, Schlatmann R, Shikano M, Sinke W, Sinton R, Stanbery B J, Topic M, Tumas W, Ueda Y, van de Lagemaat J, Verlinden P, Vetter M, Warren E, Werner M, Yamaguchi M, Bett A W. Science, 2019, 364: 836.

[4]

Barber J. Chem. Soc. Rev., 2008, 38: 185.

[5]

Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K. Nature, 2004, 427: 465.

[6]

Sun H, Zhang X, Miao L, Zhao L, Luo Q, Xu J, Liu J. ACS Nano., 201, 10: 421.

[7]

Proppe A H, Li Y C, Aspuru-Guzik A, Berlinguette C P, Chang C J, Cogdell R, Doyle A G, Flick J, Gabor N M, van Grondelle R, Hammes-Schiffer S, Jaffer S A, Kelley S O, Leclerc M, Leo K, Mallouk T E, Narang P, Schlau-Cohen G S, Scholes G D, Vojvodic A, Yam V W-W, Yang J Y, Sargent E H. Nat. Rev. Mater., 2020, 5: 828.

[8]

Zhu X-G, Long S P, Ort D R. Plant Biology, 2010, 61: 235.

[9]

Umena Y, Kawakami K, Shen J-R, Kamiya N. Nature, 2011, 473: 55.

[10]

Shen J-R. Annu. Rev. Plant Biol., 2012, 66: 1.

[11]

Blakemore J D, Crabtree R H, Brudvig G W. Chem. Rev., 2015, 115: 12974.

[12]

Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, Yamashita K, Yamamoto M, Ago H, Shen J-R. Nature, 2015, 517: 99.

[13]

Lohmiller T, Krewald V, Sedoud A, Rutherford A W, Neese F, Lubitz W, Pantazis D A, Cox N. J. Am. Chem. Soc., 2017, 139: 14412.

[14]

Vinyard D J, Khan S, Brudvig G W. Faraday Discuss, 2015, 185: 37.

[15]

Barber J. Nat. Plants, 2017, 3: 17041.

[16]

Garrido-Barros P, Gimbert-Suriñach C, Matheu R, Sala X, Llobet A. Chem. Soc. Rev., 2017, 46: 6088.

[17]

Hessels J, Detz R J, Koper M T M, Reek J N H. Chem-European J., 2017, 23: 16413.

[18]

Romain S, Vigara L, Llobet A. Accounts Chem. Res., 2009, 42: 1944.

[19]

Duan L, Tong L, Xu Y, Sun L. Energ. Environ. Sci., 2011, 4: 3296.

[20]

Javier J C, Jonah W J, Kyle B M, Paul G H, Antonio Otavio T P, Yukie M I N, Joseph L T, Thomas J M. Accounts Chem. Res., 2009, 42: 1954.

[21]

Gersten S W, Samuels G J, Meyer T J. J. Am. Chem. Soc., 1982, 104: 4029.

[22]

Gilbert J A, Eggleston D S, Murphy W R, Geselowitz D A, Gersten S W, Hodgson D J, Meyer T J. J. Am. Chem. Soc., 1985, 107: 3855.

[23]

Moonshiram D, Jurss J W, Concepcion J J, Zakharova T, Alperovich I, Meyer T J, Pushkar Y. J. Am. Chem. Soc., 2012, 134: 4625.

[24]

Yamada H, Hurst J K. J. Am. Chem. Soc., 2000, 122: 5303.

[25]

Liu F, Concepcion J J, Jurss J W, Cardolaccia T, Templeton J L, Meyer T J. Inorg. Chem., 2008, 47: 1727.

[26]

Moyer B A, Meyer T J. J. Am. Chem. Soc., 1978, 100: 3601.

[27]

Zong R, Thummel R P. J. Am. Chem. Soc., 2005, 127: 12802.

[28]

Duan L, Fischer A, Xu Y, Sun L. J. Am. Chem. Soc., 2009, 131: 10397.

[29]

Wang L, Duan L, Stewart B, Pu M, Liu J, Privalov T, Sun L. J. Am. Chem. Soc., 2012, 134: 18868.

[30]

Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L. Nat. Chem., 2012, 4: 418.

[31]

Arnold P L, Pearson S. Coordin. Chem. Rev., 2007, 251: 596.

[32]

Albrecht M. Chem. Commun., 2008, 0: 3601.

[33]

Schuster O, Yang L, Raubenheimer H G, Albrecht M. Chem. Rev., 2009, 109: 3445.

[34]

Lalrempuia R, McDaniel N D, Müller-Bunz H, Bernhard S, Albrecht M. Angewandte Chemie Int. Ed, 2010, 49: 9765.

[35]

Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. Science, 201, 353: 1011.

[36]

Pi Y, Shao Q, Wang P, Guo J, Huang X. Adv. Funct. Mater., 2017, 27: 1700886.

[37]

Lin Y, Tian Z, Zhang L, Ma J, Jiang Z, Deibert B J, Ge R, Chen L. Nat. Commun., 2019, 10: 162.

[38]

Yao Y, Hu S, Chen W, Huang Z-Q, Wei W, Yao T, Liu R, Zang K, Wang X, Wu G, Yuan W, Yuan T, Zhu B, Liu W, Li Z, He D, Xue Z, Wang Y, Zheng X, Dong J, Chang C-R, Chen Y, Hong X, Luo J, Wei S, Li W-X, Strasser P, Wu Y, Li Y. Nat. Catal., 2019, 2: 304.

[39]

Fischer W W, Hemp J, Johnson J E. Origins Life Evol. B, 2015, 45: 351.

[40]

Zhang C, Chen C, Dong H, Shen J-R, Dau H, Zhao J. Science, 2015, 348: 690.

[41]

Wickramaslnghe L D, Zhou R, Zong R, Vo P, Gagnon K J, Thummel R P. J. Am. Chem. Soc., 2015, 137: 13260.

[42]

Nelson N, Ben-Shem A. Nat. Rev. Mol. Cell Bio., 2004, 5: 971.

[43]

Andersson I. J. Exp. Bot., 2008, 59: 1555.

[44]

Esper B, Badura A, Rögner M. Trends Plant Sci., 200, 11: 543.

[45]

Benemann J R, Berenson J A, Kaplan N O, Kamen M D. Proc. National Acad. Sci., 1973, 70: 2317.

[46]

Wang F., Chemsuschem, 4393, 10, 4393

[47]

Fujita E. Coordin. Chem. Rev., 1999, 185: 373.

[48]

Chen L, Chen G, Leung C-F, Cometto C, Robert M, Lau T-C. Chem. Soc. Rev., 2020, 49: 7271.

[49]

Esswein A J, Nocera D G. Chem. Rev., 2007, 107: 4022.

[50]

Dempsey J L, Winkler J R, Gray H B. J. Am. Chem. Soc., 2010, 132: 16774.

[51]

Meshitsuka S., Ichikawa M., Tamaru K., J. Chem. Soc. Chem. Commun., 1974, 158

[52]

Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A. Chem. Soc. Rev., 2014, 43: 7501.

[53]

Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C. Structure, 1999, 7: 13.

[54]

Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C. Science, 1998, 282: 1853.

[55]

Gloaguen F, Lawrence J D, Rauchfuss T B. J. Am. Chem. Soc., 2001, 123: 9476.

[56]

Barton B E, Whaley C M, Rauchfuss T B, Gray D L. J. Am. Chem. Soc., 2009, 131: 6942.

[57]

Barton B E, Rauchfuss T B. J. Am. Chem. Soc., 2010, 132: 14877.

[58]

Eckenhoff W T. Coordin. Chem. Rev., 2018, 373: 295.

[59]

Brown G M, Brunschwig B S, Creutz C, Endicott J F, Sutin N. J. Am. Chem. Soc., 1979, 101: 1298.

[60]

McCormick T M, Han Z, Weinberg D J, Brennessel W W, Holland P L, Eisenberg R. Inorg. Chem., 2011, 50: 10660.

[61]

Probst B, Guttentag M, Rodenberg A, Hamm P, Alberto R. Inorg. Chem., 2011, 50: 3404.

[62]

Du P, Schneider J, Luo G, Brennessel W W, Eisenberg R. Inorg. Chem., 2009, 48: 4952.

[63]

Zhang P, Wang M, Dong J, Li X, Wang F, Wu L, Sun L. J. Phys. Chem. C, 2010, 114: 15868.

[64]

Kuramochi Y, Ishitani O, Ishida H. Coordin. Chem. Rev., 2018, 373: 333.

[65]

Hawecker J, Lehn J, Ziessel R. Helv. Chim. Acta, 198, 69: 1990.

[66]

Hawecker J., Lehn J.-M., Ziessel R., J. Chem. Soc. Chem. Commun., 1983, 536

[67]

Sullivan B. P., Bolinger C. M., Conrad D., Vining W. J., Meyer T. J., J. Chem. Soc. Chem. Commun., 1985, 1414

[68]

Smieja J M, Kubiak C P. Inorg. Chem., 2010, 49: 9283.

[69]

Takeda H, Koike K, Inoue H, Ishitani O. J. Am. Chem. Soc., 2008, 130: 2023.

[70]

Bourrez M, Molton F, Chardon-Noblat S, Deronzier A. Angewandte Chemie Int. Ed., 2011, 50: 9903.

[71]

Rao H, Schmidt L C, Bonin J, Robert M. Nature, 2017, 548: 74.

[72]

Bhugun I, Lexa D, Savéant J-M. J. Am. Chem. Soc., 199, 118: 1769.

[73]

Costentin C, Drouet S, Passard G, Robert M, Savéant J-M. J. Am. Chem. Soc., 2013, 135: 9023.

[74]

Hammouche M, Lexa D, Momenteau M, Saveant J M. J. Am. Chem. Soc., 1991, 113: 8455.

[75]

Costentin C, Drouet S, Robert M, Savéant J-M. Science, 2012, 338: 90.

[76]

Azcarate I, Costentin C, Robert M, Savéant J-M. J. Am. Chem. Soc., 201, 138: 16639.

[77]

Dalle K E, Warnan J, Leung J J, Reuillard B, Karmel I S, Reisner E. Chem. Rev., 2019, 119: 2752.

[78]

Xiang Q, Cheng B, Yu J. Angewandte Chemie Int. Ed., 2015, 54: 11350.

[79]

Cadranel A, Margraf J T, Strauss V, Clark T, Guldi D M. Accounts Chem. Res., 2019, 52: 955.

[80]

Vyas V S, Lau V W, Lotsch B V. Chem. Mater., 201, 28: 5191.

[81]

Fang Y, Wang X. Chem. Commun., 2018, 54: 5674.

[82]

Wei Y., Chen L., Chen H., Cai L., Tan G., Qiu Y., Xiang Q., Chen G., Lau T., Robert M., Angewandte Chemie Int. Ed., 2022, e202116832

[83]

Tachibana Y, Vayssieres L, Durrant J R. Nat. Photonics, 2012, 6: 511.

[84]

Ozaki K, Tajika E, Hong P K, Nakagawa Y, Reinhard C T. Nat. Geosci., 2018, 11: 55.

[85]

Sala X, Maji S, Bofill R, García-Antón J, Escriche L, Llobet A. Accounts Chem. Res., 2014, 47: 504.

[86]

Gil-Sepulcre M, Lindner J O, Schindler D, Velasco L, Moonshiram D, Rüdiger O, DeBeer S, Stepanenko V, Solano E, Würthner F, Llobet A. J. Am. Chem. Soc., 2021, 143: 11651.

[87]

Perazio A, Lowe G, Gobetto R, Bonin J, Robert M. Coordin. Chem. Rev., 2021, 443: 214018.

[88]

Arcudi F, Đorđević L, Nagasing B, Stupp S I, Weiss E A. J. Am. Chem. Soc., 2021, 143: 18131.

[89]

Zhao L, Zou H, Zhang H, Sun H, Wang T, Pan T, Li X, Bai Y, Qiao S, Luo Q, Xu J, Hou C, Liu J. ACS Nano., 2017, 11: 938.

[90]

Li X, Qiao S, Zhao L, Liu S, Li F, Yang F, Luo Q, Hou C, Xu J, Liu J. ACS Nano., 2019, 13: 1861.

[91]

Hu J-C, Sun S, Li M-D, Xia W, Wu J, Liu H, Wang F. Chem. Commun., 2019, 55: 14490.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/