Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography

Wanyuan Wei , Mengwei Li , Yulan Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 829 -833.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 829 -833. DOI: 10.1007/s40242-022-2044-7
Article

Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography

Author information +
History +
PDF

Abstract

We present a simple approach to fabricate a kind of composite films with a superhydrophobic and broadband light absorbing surface by ultraviolet-assisted nanoimprinting over a gradiently deposited composite matrix. The wettability and optical property of the resultant surfaces are tunable by the deposition time before polymerization(Ts) and mold’s topography. Mechanically robust and elastomeric films exhibiting high sunlight absorptivity up to 98.13% and contact angle of their surfaces up to 150° are prepared under optimized conditions, as using a mold with a small pattern size(hexagonal periodic mold with cylinder diameter of ca. 37 μm) under Ts =10 min for imprinting the crosslinked poly[di(ethylene glycol) ethyl ether acrylate] and poly(isobornyl acrylate) in the presence of polypyrrole(PPy) nanoparticles. Such dual functions are found related to the hierarchical architecture of the surface, arising from the synergetic effects of the periodical patterned polymer substrate and spontaneously assembled PPy microstructures on the patterns. The current strategy based on the combination of ultraviolet-assisted nanoimprint lithography and hierarchical assembly of gradiently deposited black nano-fillers offers a new insight into the design of robust superhydrophobic and black surfaces, which is helpful to deepen our understanding of the relationship between liquid/light manipulation and micro/nanostructured surfaces.

Keywords

Superhydrophobic surface / Black absorber / Composite film / Ultraviolet-assisted nanoimprint lithography / Hierarchical microstructure

Cite this article

Download citation ▾
Wanyuan Wei, Mengwei Li, Yulan Chen. Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography. Chemical Research in Chinese Universities, 2022, 38(3): 829-833 DOI:10.1007/s40242-022-2044-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng T, He R, Zhang Q, Zhan X, Chen F. J. Mater. Chem. A, 2015, 3: 21637.

[2]

He M, Ding Y, Chen J, Song Y. ACS Nano, 201, 10: 9456.

[3]

Ma W, Li Y, Chao C Y H, Tso C Y, Huang B, Li W, Yao S. Cell Rep. Phys. Sci., 2021, 2: 100384.

[4]

Jiang G, Chen L, Zhang S, Huang H. ACS Appl. Mater. Interfaces, 2018, 10: 36505.

[5]

Zhu H, Wu L, Meng X, Wang Y, Huang Y, Lin M, Xia F. Nanoscale, 2020, 12: 11455.

[6]

Zhu T, Cheng Y, Huang J, Xiong J, Ge M, Mao J, Liu Z, Dong X, Chen Z, Lai Y. Chem. Eng. J., 2020, 399: 125746.

[7]

Zhu H, Cai S, Liao G, Gao Z F, Min X, Huang Y, Jin S, Xia F. ACS Catal., 2021, 11: 14751.

[8]

Li W, Lin C, Ma W, Li Y, Chu F, Huang B, Yao S. Cell Rep. Phys. Sci., 2021, 2: 100435.

[9]

Wu C, Geng H, Tan S, Lv J, Wang H, He Z, Wang J. Mater. Horizons, 2020, 7: 2097.

[10]

Wang M, Yang T, Cao G, Wang X, Jiang Z, Wang C, Li Y. Chem. Eng. J., 2021, 408: 127316.

[11]

Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T. Adv. Mater., 2015, 27: 428.

[12]

Yao L, He J. Prog. Mater. Sci., 2014, 61: 94.

[13]

Zuo Y, Zheng L, Zhao C, Liu H. Small, 2020, 16: 1903849.

[14]

Tadepalli S, Slocik J M, Gupta M K, Naik R R, Singamaneni S. Chem. Rev., 2017, 117: 127057.

[15]

Yan J, Wu M J, Han Y, Chen Y L, Liu M J. Chem. Asian J., 2020, 15: 1436.

[16]

Kim J U, Lee S, Kang S J, Kim T-I. Nanoscale, 2018, 10: 21555.

[17]

Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115: 8230.

[18]

Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14: 1857.

[19]

Zhao Q, Guo X, Fan T, Ding J, Zhang D, Guo Q. Soft Matter, 2011, 7: 11433.

[20]

Lou S, Guo X, Fan T, Zhang D. Energy Environ. Sci., 2012, 5: 9195.

[21]

Prum R O, Torres R, Williamson S, Dyck J. Proc. Royal Soc. B, 1999, 266: 13.

[22]

McCoy D E, Feo T, Harvey T A, Prum R O. Nat. Commun., 2018, 9: 1.

[23]

Wu S, Du Y, Alsaid Y, Wu D, Hua M, Yan Y, Yao B, Ma Y, Zhu X, He X. Proc. Natl. Acad. Sci.USA, 2020, 117: 11240.

[24]

Mitridis E, Schutzius T M, Sicher A, Hail C U, Eghlidi H, Poulikakos D. ACS Nano, 2018, 12: 7009.

[25]

Wei W, Li M, Han Y, Wu M, Yan J, Liu M, Chen Y. Adv. Opt. Mater., 2021, 10: 2101854.

[26]

Wu C, Li C, Yu X, Chen L, Gao C, Zhang X, Zhang G, Zhang D. Angew. Chem. Int. Ed., 2021, 60: 21521.

[27]

Chen Z, Duan S, Zhang X, Hu W. Appl. Phys. Lett., 2021, 119: 040501.

[28]

Dundar Arisoy F, Kolewe K W, Homyak B, Kurtz I S, Schiffman J D, Watkins J J. ACS Appl. Mater. Interfaces, 2018, 10: 20055.

[29]

Acikgoz C, Hempenius M A, Huskens J, Vancso G J. Eur. Polym. J., 2011, 47: 2033.

[30]

Jo H-B, Byeon K-J, Lee H, Kwon M-H, Choi K-W. J. Mater. Chem., 2012, 22: 20742.

[31]

del Campo A, Arzt E. Chem. Rev., 2008, 108: 911.

[32]

Chan-Park M B, Lam Y C, Laulia P, Joshi S C. Langmuir, 2005, 21: 2000.

[33]

Cui W, King D R, Huang Y, Chen L, Sun T L, Guo Y, Saruwatari Y, Hui C-Y, Kurokawa T, Gong J P. Adv. Mater., 2020, 32: 1907180.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/