Effects of High Pressure on the Surface Plasmon Resonance of Copper and Silver Nanocrystals

Zha Luo , Hao Liu , Wei Shen , Kun Shi , Ankang Chen , Libo Sheng , Yongming Sui , Bo Zou

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 843 -846.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 843 -846. DOI: 10.1007/s40242-022-2042-9
Article

Effects of High Pressure on the Surface Plasmon Resonance of Copper and Silver Nanocrystals

Author information +
History +
PDF

Abstract

We used a diamond anvil cell(DAC) to control the deformation of synthesized copper nanorods and silver nanoparticles. And we measured the surface plasmon resonance of copper nanorods and silver nanoparticles, which exhibit redshifts or blueshifts. The surface plasmon resonance shows an abnormal blue shift for both copper nanorods and silver nanoparticles. The solvents of copper nanorods and silver nanoparticles are n-hexane and water, where the pressure loads include quasi-hydrostatic and non-hydrostatic.

Keywords

High pressure / Surface plasmon resonance / Optical absorption

Cite this article

Download citation ▾
Zha Luo, Hao Liu, Wei Shen, Kun Shi, Ankang Chen, Libo Sheng, Yongming Sui, Bo Zou. Effects of High Pressure on the Surface Plasmon Resonance of Copper and Silver Nanocrystals. Chemical Research in Chinese Universities, 2022, 38(3): 843-846 DOI:10.1007/s40242-022-2042-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burda C, Chen X, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105(4): 1025.

[2]

Sapienza R, Coenen T, Renger J, Kuttge M, van Hulst N F, Polman A. Nat. Mater., 2012, 11: 781.

[3]

Bashevoy M V, Jonsson F, MacDonald K F, Chen Y, Zheludev N I. Optics Express, 2007, 15(18): 11313.

[4]

Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, van Duyne R P. Nat. Mater., 2008, 7: 442.

[5]

Nie S, Emory S R. Science, 1997, 275(5303): 1102.

[6]

Coffer J L, Shapley J R, Drickamer H G. J. Am. Chem. Soc., 1990, 112: 3736-3742.

[7]

Bao Y, Zhao B, Hou D J, Liu J S, Wang F, Wang X, Cui T. J. Appl. Phys., 2014, 115: 223503.

[8]

Runowski M, Sobczak S, Marciniak J, Bukalska I, Lis S, Katrusiak A. Nanoscale, 2019, 11: 8718.

[9]

Martín-Sánchez C, González-Rubio G, Mulvaney P, Guerrero-Martínez A, Liz-Marzán L M, Rodríguez F. J. Phys. Chem. Lett., 2019, 10: 1587.

[10]

Medeghini F, Hettich M, Rouxel R, Silva Santos S D, Hermelin S, Pertreux E, Torres Dias A, Legrand F, Maioli P, Crut A, Vallée F, San Miguel A, Del Fatti N. ACS Nano, 2018, 12: 10310.

[11]

Martin-Sanchez C, Barreda-Argüeso J A, Seibt S, Mulvaney P, Rodríguez F. ACS Nano, 2019, 13(1): 498.

[12]

Wang H, Luo J, Zhu H, Ge C, He L, Wang H, Wu M, Wang Y, Yang X. Russ. J. Phys. Chem. A, 2020, 94: 231.

[13]

Jeong S, Liu Y, Zhong Y, Zhan X, Li Y, Wang Y, Cha P M, Chen J, Ye X. Nano Lett., 2020, 20(10): 7263.

[14]

Pietrobon B, McEachran M, Kitaev V. ACS Nano, 2009, 3(1): 21.

[15]

Li C, Sun L, Sun Y, Toshiharu T. Chem. Mater., 2013, 25(13): 2580.

[16]

Ming L, Aleksey R, Hsin-Chieh P, Jing T, Legna F, Zhike H, Younan X. Adv. Funct. Mater., 201, 26: 1209.

[17]

Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103(40): 8410.

[18]

Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107(3): 668.

[19]

Gregory V H. Chem. Rev., 2011, 111(6): 3858.

[20]

Pietrobon B, Kitaev V. Chem. Mater., 2008, 20(16): 5186.

[21]

Bao Y, Zhao B, Tang X, Hou D, Cai J, Tang S, Liu J, Wang F, Cui T. Appl. Phys. Lett., 2015, 107: 201909.

[22]

Martín-Sánchez C, Sánchez-Iglesias A, Mulvaney P, Liz-Marzán L M, Rodríguez F. J. Phys. Chem. C, 2022, 126(4): 1982.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/