Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction

Zhimin Hao , Dapeng Liu , Huaiyun Ge , Xintao Zuo , Xilan Feng , Mingzhe Shao , Haohan Yu , Guobao Yuan , Yu Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 823 -828.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 823 -828. DOI: 10.1007/s40242-022-2040-y
Article

Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

Molybdenum doping is an effective way to improve the oxygen evolution reaction(OER) properties of catalysts, which can efficiently improve the electronic conductivity, mass transport process, and intrinsic activity of transition metal oxides or hydroxides, especially for those multi-component oxides with more abundant active sites. Herein, we have prepared a quaternary FeCoMoCu metal oxide on Cu foam(FeCoMoCuO x@Cu) as an efficient OER catalyst. As expected, FeCoMoCuO x@Cu could exhibit a low overpotential(252 mV at the current density of 10 mA/cm2) and exceptional stability(10000 cycles of CV scans or constant electrolysis for 48 h).

Keywords

Oxygen evolution reaction(OER) / Electrocatalysis / Transition metal oxide / Molybdenum doping

Cite this article

Download citation ▾
Zhimin Hao, Dapeng Liu, Huaiyun Ge, Xintao Zuo, Xilan Feng, Mingzhe Shao, Haohan Yu, Guobao Yuan, Yu Zhang. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2022, 38(3): 823-828 DOI:10.1007/s40242-022-2040-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng W, Wang Y, Yang X X, Mao L C, Jin J H, Yang S L, Fu K, Li G. Appl. Catal. B: Environ., 2020, 268: 118437.

[2]

Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44: 5148.

[3]

Li X F, Liu Y J, Chen H B, Yang M, Yang D G, Li H M, Lin Z Q. Nano Lett., 2021, 21: 3098.

[4]

Wu D L, Chen D, Zhu J W, Mu S C. Small, 2021, 17: 2102777.

[5]

Han L, Dong S J, Wang E K. Adv. Mater., 201, 28: 9266.

[6]

Li Y B, Zhao C. Chem. Mater., 201, 28: 5659.

[7]

Jiang W J, Niu S, Tang T, Zhang Q H, Liu X Z, Zhang Y, Chen Y Y, Li J H, Gu L, Wan L J, Hu J S. Angew. Chem. Int. Ed., 2017, 56: 6572.

[8]

Liu Y, Ying Y R, Fei L F, Liu Y, Hu Q Z, Zhang G G, Pang S Y, Lu W, Mak C L, Luo X, Zhou L M, Wei M D, Huang H T. J. Am. Chem. Soc., 2019, 141: 8136.

[9]

Zhu Y P, Ma T Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2017, 56: 1324.

[10]

Zhuang L Z, Jia Y, Liu H L, Li Z H, Li M R, Zhang L Z, Wang X. Angew. Chem. Int. Ed., 2020, 59: 14664.

[11]

Bandal H A, Jadhav A R, Tamboli A H, Kim H. Electrochimica Acta, 2017, 249: 253.

[12]

Yu J, Li Q Q, Li Y, Xu C Y, Zhen L, Dravid V P, Wu J S. Adv. Funct. Mater., 201, 26: 7644.

[13]

Jin Y S, Wang H T, Li J J, Yue X, Han Y J, Shen P K, Cui Y. Adv. Mater., 201, 28: 3785.

[14]

Zang M J, Xu N, Cao G X, Chen Z J, Cui J, Gan L Y, Dai H B, Yang X F, Wang P. ACS Catal., 2018, 8: 5062.

[15]

Xu Y, Xie L J, Li D, Yang R, Jiang D L, Chen M. ACS Sustainable Chem. Eng., 2018, 6: 16086.

[16]

Han N, Zhao F P, Li Y G. J. Mater. Chem. A, 2015, 3: 16348.

[17]

Ganguli S, Ghosh S, Das S, Mahalingam V. Nanoscale, 2019, 11: 16896.

[18]

Dastafkan K., Wang S. H., Rong C. L., Meyer Q., Li Y. B., Zhang Q., Zhao C., Adv. Funct. Mater., 2021, 2107342

[19]

Zhao X H, Xue Z M, Chen W J, Bai X Y, Shi R F, Mu T C. J. Mater. Chem. A, 2019, 7: 26238.

[20]

Han M, Wang C H, Zhong J, Han J R, Wang N, Seifitokaldani A, Yu Y F, Liu Y C, Sun X H, Vomiero A, Liang H Y. Appl. Catal. B Environ., 2022, 301: 120764.

[21]

Zhang L. J., Cai W. W., Bao N. Z., Adv. Mater., 2021, 2100745

[22]

Zheng W R, Liu M J, Lee L Y S. ACS Energy Lett., 2020, 5: 3260.

[23]

Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlögl U, Alshareef H N. Nano Lett., 201, 16: 7718.

[24]

Yang L, Liu D P, Cui G M, Xie Y M. RSC Adv., 2017, 7: 19312.

[25]

Zhang Y, Guo H R, Yuan P F, Pang K L, Cao B X, Wu X, Zheng L R, Song R. J. Power Sources, 2019, 442: 227252.

[26]

Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Adv.Mater., 2020, 32: 1907214.

[27]

Veerasubramani G K, Krishnamoorthy K, Kim S J. J. Power Sources, 201, 306: 378.

[28]

Xie C, Wang Y Y, Hu K, Tao L, Huang X B, Huo J, Wang S Y. J. Mater. Chem. A, 2017, 5: 87.

[29]

Cai Z, Zhou D J, Wang M Y, Bak S M, Wu Y S, Wu Z S, Tian Y, Xiong X Y, Li Y P, Liu W, Siahrostami S, Kuang Y, Yang X Q, Duan H H, Feng Z X. Angew. Chem. Int. Ed., 2018, 130: 9536.

[30]

Zhang B, Wang L, Cao Z, Kozlov S M, Arquer F P G, Dinh C T, Li J, Wang Z Y, Zheng X L, Zhang L S, Wen Y Z, Voznyy O, Comin R, Luna P D, Regier T, Bi W L, Alp E E, Pao C W, Zheng L R, Hu Y F, Li Y J, Li Y Y, Zhang Y, Cavallo I, Peng H S, Sargent E H. Nat. Catal., 2020, 3: 985.

[31]

Gong Y Q, Yang Z, Lin Y, Wang J L, Pan H L, Xu Z F. J. Mater. Chem. A, 2018, 6: 16950.

[32]

Guo X L, Zheng T X, Ji G P, Hu N, Xu C H, Zhang Y X. J. Mater. Chem. A, 2018, 6: 10243.

[33]

Li D J, Li Q H, Gu Z G, Zhang J. J. Mater. Chem. A, 2019, 7: 18519.

[34]

Gu M Z, Deng X Y, Lin M, Wang H, Gao A, Huang X M, Zhang X J. Adv. Energy Mater., 2021, 11: 2102361.

[35]

de Faria D L A, Silva S V, de Oliveira M T. J. Raman Spectrosc., 1997, 28: 873.

[36]

Chen Z, Kronawitter C X, Yeh Y W, Yang X F, Peng Z, Yao N, Koel B E. J. Mater. Chem. A, 2017, 5: 842.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/