The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine

Shifan Hu , Yafeng Wang , Bin Su

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 816 -822.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 816 -822. DOI: 10.1007/s40242-022-2036-7
Article

The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine

Author information +
History +
PDF

Abstract

Electrochemiluminescence(ECL) is a powerful transduction technique used in biosensing and in vitro diagnosis, while the mechanism of ECL generation is complicated and affected by various factors. Herein the effect of ionic strength on ECL generation by the classical tris(2,2′-bipyridyl)ruthenium(II)[Ru(bpy)3 2+]/tri-n-propylamine(TPrA) system was investigated. It is clear that the ECL intensity decreases significantly with the increase of ionic strength, most likely arising from the reduced deprotonation rate of TPrA. We further combined microtube electrode(MTE) with ECL microscopy to unravel the evolution of ECL layer with the variation of ionic strength. At a low concentration of Ru(bpy)3 2+, the thickness of ECL layer(TEL) nearly kept unchanged with the ionic strength, indicating the surface-confined ECL generation is dominated by the oxidative-reduction route. While at a high concentration of Ru(bpy)3 2+, ECL generation is dominated by the catalytic route and TEL increases remarkably with the increase of ionic strength, because of the extended diffusion length of Ru(bpy)3 3+ at a reduced concentration of TPrA·.

Keywords

Electrochemiluminescence(ECL) / ECL layer thickness / ECL microscopy / Ionic strength / Reaction mechanism

Cite this article

Download citation ▾
Shifan Hu, Yafeng Wang, Bin Su. The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine. Chemical Research in Chinese Universities, 2022, 38(3): 816-822 DOI:10.1007/s40242-022-2036-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miao W J. Chem. Rev., 2008, 108: 2506.

[2]

Richter M M. Chem. Rev., 2004, 104: 3003.

[3]

Hu L Y, Wu Y, Xu M, Gu W L, Zhu C Z. Chem. Commun., 2020, 56: 10989.

[4]

Xu J J, Huang P Y, Qin Y, Jiang D C, Chen H Y. Anal. Chem., 201, 88: 4609.

[5]

Liu Z Y, Qi W J, Xu G B. Chem. Soc. Rev., 2015, 44: 3117.

[6]

Chang Y L, Palacios R E, Fan F R F, Bard A J, Barbara P F. J. Am. Chem. Soc., 2008, 130: 8906.

[7]

Hesari M, Ding Z F. Acc. Chem. Res., 2017, 50: 218.

[8]

Ma C, Wu W W, Li L L, Wu S J, Zhang J R, Chen Z X, Zhu J J. Chem. Sci., 2018, 9: 6167.

[9]

Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Angew. Chem. Int. Ed., 2018, 57: 4010.

[10]

Ding H, Guo W L, Su B. Angew. Chem. Int. Ed., 2020, 59: 449.

[11]

Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. J. Am. Chem. Soc., 2017, 139: 16830.

[12]

Liu G, Ma C, Jin B K, Chen Z X, Zhu J J. Anal. Chem., 2018, 90: 4801.

[13]

Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, Paolucci F, Arbault S, Sojic N. J. Am. Chem. Soc., 2018, 140: 14753.

[14]

Su B. Anal. Bioanal. Chem., 201, 408: 2781.

[15]

Xu L R, Li Y, Wu S Z, Liu X H, Su B. Angew. Chem. Int. Ed., 2012, 51: 8068.

[16]

Xu L R, Zhang C Z, He Y Y, Su B. Sci. China Chem., 2015, 58: 1090.

[17]

Xu L R, Zhou Z Y, Zhang C Z, He Y Y, Su B. Chem. Commun., 2014, 50: 9097.

[18]

Guo W, Liu Y, Cao Z, Su B. J. Anal. Test., 2017, 1: 14.

[19]

Wang Y F, Cao Z Y, Yang Q, Guo W L, Su B. Anal. Chim. Acta, 2019, 1074: 1.

[20]

Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N. Chem. Sci., 2014, 5: 2568.

[21]

Zanut A, Fiorani A, Canola S, Saito T, Ziebart N, Rapino S, Rebeccani S, Barbon A, Irie T, Josel H P, Negri F, Marcaccio M, Windfuhr M, Imai K, Valenti G, Paolucci F. Nat. Commun., 2020, 11: 2668.

[22]

Noffsinger J B, Danielson N D. Anal. Chem., 1987, 59: 865.

[23]

Leland J K, Powell M J. J. Electrochem. Soc., 1990, 137: 3127.

[24]

Miao W J, Choi J P, Bard A J. J. Am. Chem. Soc., 2002, 124: 14478.

[25]

Zu Y B, Bard A J. Anal. Chem., 2000, 72: 3223.

[26]

Wang Y F, Su B. Analysis & Sensing, 2021, 1: 148.

[27]

Wang Y F, Guo W L, Yang Q, Su B. J. Am. Chem. Soc., 2020, 142: 1222.

[28]

Guo W L, Zhou P, Sun L, Ding H, Su B. Angew. Chem. Int. Ed., 2021, 60: 2089.

[29]

Ma C, Wu S J, Zhou Y, Wei H F, Zhang J R, Chen Z X, Zhu J J, Lin Y H, Zhu W L. Angew. Chem. Int. Ed., 2021, 60: 4907.

[30]

Wightman R M, Forry S P, Maus R, Badocco D, Pastore P. J. Phys. Chem. B, 2004, 108: 19119.

[31]

Ye R H, Chen X P, Qiu B, Lin Z Y. Chin. J. Chem., 2011, 29: 2148.

[32]

Gross E M, Pastore P, Wightman R M. J. Phys. Chem. B, 2001, 105: 8732.

[33]

Liu X Q, Shi L H, Niu W X, Li H J, Xu G B. Angew. Chem. Int. Ed., 2007, 46: 421.

[34]

Kanoufi F, Bard A J. J. Phys. Chem. B, 1999, 103: 10469.

[35]

Bottari F, Oliveri P, Ugo P. Biosens. Bioelectron., 2014, 52: 403.

[36]

Pereira F C, Moretto L M, De Leo M, Boldrin Zanoni M V, Ugo P. Anal. Chim. Acta, 200, 575: 16.

[37]

Hubert G. Analytical and Physical Electrochemistry, 2004, Lausanne: EPFL Press

[38]

Fiorani A, Han D, Jiang D, Fang D, Paolucci F, Sojic N, Valenti G. Chem. Sci., 2020, 11: 10496.

[39]

Chovin A, Garrigue P, Vinatier P, Sojic N. Anal. Chem., 2004, 76: 357.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/