Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction

Yu Gong , Jing Pan , Lingling Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1287 -1291.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (5) : 1287 -1291. DOI: 10.1007/s40242-022-2034-9
Article

Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction

Author information +
History +
PDF

Abstract

Electrochemical reduction of carbon dioxide into value-added products is a promising way to recycle the greenhouse gas, thus solving the crisis of global warming. Pressing challenges remain in regulating the catalytic selectivity. In this work, we demonstrated a metal-organic frameworks-assisted approach to synthesizing In species loaded on the surface of N doped carbon matrix. By controlling the particle sizes, the catalytic selectivity can be easily altered. The obtained Inc/NC possesses the outstanding capability for converting CO2 into CO. And 80.09% Faraday efficiency (FE) of CO can be achieved at 0.8 V vs. RHE. While the In2O3/C exhibits different catalytic behaviors, the main product is formic acid and the FE is more than 50% at 0.8 V vs. RHE. The selectivity reversal can be attributed to the strong interactions between In clusters and N atoms of carbon supports, which efficiently inhibits the formation of the by-product, formic acid. Our research has paved a new way to modulate catalytic selectivity by manipulating the fine structures of the catalysts.

Keywords

Indium cluster / Indium oxide / Electrochemical reduction / CO2 electroreduction

Cite this article

Download citation ▾
Yu Gong, Jing Pan, Lingling Zhang, Xiao Wang, Shuyan Song, Hongjie Zhang. Metal-Organic Frameworks-derived Indium Clusters/Carbon Nanocomposites for Efficient CO2 Electroreduction. Chemical Research in Chinese Universities, 2022, 38(5): 1287-1291 DOI:10.1007/s40242-022-2034-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Nature, 2000, 408: 184.

[2]

Karl T R, Trenberth K E. Science, 2003, 302: 1719.

[3]

Manabe S, Stouffer R J. J. Geophys. Res.: Oceans, 1980, 85: 5529.

[4]

Kim C, Dionigi F, Beermann V, Wang X L, Moller T, Strasser P. Adv. Mater., 2019, 31: 1805617.

[5]

Losch P, Huang W X, Goodman E D, Wrasman C J, Holm A, Riscoe A R, Schwalbe J A, Cargnello M. Nano Today, 2019, 24: 15.

[6]

de Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. Science, 2019, 364: 350.

[7]

Masa J, Andronescu C, Schuhmann W. Angew. Chem. Int. Ed. Engl., 2020, 59: 15298.

[8]

Guo W, Tan X, Bi J, Xu L, Yang D, Chen C, Zhu Q, Ma J, Tayal A, Ma J, Huang Y, Sun X, Liu S, Han B. J. Am. Chem. Soc., 2021, 143: 6877.

[9]

Sun X, Lu L, Zhu Q, Wu C, Yang D, Chen C, Han B. Angew. Chem. Int. Ed. Engl., 2018, 57: 2427.

[10]

Yang D, Zhu Q, Sun X, Chen C, Guo W, Yang G, Han B. Angew. Chem. Int. Ed. Engl., 2020, 59: 2354.

[11]

Gunji T, Ochiai H, Ohira T, Liu Y, Nakajima Y, Matsumoto F. Chem. Mater., 2020, 32: 6855.

[12]

Luo W, Xie W, Li M, Zhang J, Zuttel A. J. Mater. Chem. A, 2019, 7: 4505.

[13]

Cao C S, Ma D D, Gu J F, Xie X Y, Zeng G, Li X F, Han S G, Zhu Q L, Wu X T, Xu Q. Angew. Chem. Int. Ed. Engl., 2020, 59: 15014.

[14]

Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu J J, Sun S. J. Am. Chem. Soc., 2017, 139: 4290.

[15]

Luc W, Collins C, Wang S, Xin H, He K, Kang Y, Jiao F. J. Am. Chem. Soc., 2017, 139: 1885.

[16]

Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 201, 529: 68.

[17]

Huo S, Weng Z, Wu Z, Zhong Y, Wu Y, Fang J, Wang H. ACS Appl. Mater. Interfaces, 2017, 9: 28519.

[18]

Wang W H, Himeda Y, Muckerman J T, Manbeck G F, Fujita E. Chem. Rev., 2015, 115: 12936.

[19]

Cao X, Li H F, Qiao Y, Jia M, Li X, Cabana J, Zhou H S. Adv. Mater., 2021, 33: 8.

[20]

Han N, Ding P, He L, Li Y Y, Li Y G. Adv. Energy Mater., 2020, 10: 19.

[21]

Shi R, Guo J, Zhang X, Waterhouse G I N, Han Z, Zhao Y, Shang L, Zhou C, Jiang L, Zhang T. Nat. Commun., 2020, 11: 3028.

[22]

Choi Y W, Scholten F, Sinev I, Roldan Cuenya B. J. Am. Chem. Soc., 2019, 141: 5261.

[23]

Geng Z, Kong X, Chen W, Su H, Liu Y, Cai F, Wang G, Zeng J. Angew. Chem. Int. Ed. Engl., 2018, 57: 6054.

[24]

Kuo H Y, Lee T S, Chu A T, Tignor S E, Scholes G D, Bocarsly A B. Dalton T., 2019, 48: 1226.

[25]

Zhang X, Yan T, Wu T, Feng Y, Sun M, Yan L, Du B, Wei Q. Biosens. Bioelectron., 2019, 135: 88.

[26]

Wu L, Xue M, Qiu SL, Chaplais G, Simon Masseron A, Patarin J. Micropor. Mesopor. Mat., 2012, 157: 75.

[27]

Xie D H, Ma Y, Gu Y, Zhou H J, Zhang H M, Wang G Z, Zhang Y X, Zhao H J. J. Mater. Chem. A, 2017, 5: 23794.

[28]

Liang R W, Huang R K, Wang X X, Ying S M, Yan G Y, Wu L. Appl. Surf. Sci., 2019, 464: 396.

[29]

Luo E, Zhang H, Wang X, Gao L, Gong L, Zhao T, Jin Z, Ge J, Jiang Z, Liu C, Xing W. Angew. Chem. Int. Ed. Engl., 2019, 58: 12469.

[30]

Zhang E, Wang T, Yu K, Liu J, Chen W, Li A, Rong H, Lin R, Ji S, Zheng X, Wang Y, Zheng L, Chen C, Wang D, Zhang J, Li Y. J. Am. Chem. Soc., 2019, 141: 16569.

[31]

Guo W, Sun X, Chen C, Yang D, Lu L, Yang Y, Han B. Green Chemistry, 2019, 21: 503.

[32]

Kim D, Resasco J, Yu Y, Asiri A M, Yang P. Nat. Commun., 2014, 5: 4948.

[33]

Zhang J, Zheng C, Zhang M, Qiu Y, Xu Q, Cheong WC, Chen W, Zheng L, Gu L, Hu Z, Wang D, Li Y. Nano Research, 2020, 13: 3082.

[34]

Koh J H, Won D H, Eom T, Kim N K, Jung K D, Kim H, Hwang Y J, Min B K. ACS Catal., 2017, 7: 5071.

[35]

Lee M Y, Ringe S, Kim H, Kang S, Kwon Y. ACS Energy Lett., 2020, 5: 2987.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/