Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions

Jing Min , Chenyang Zhang , Shuaiwei Qi , Liyan Wang , Zeyuan Dong

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 803 -808.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 803 -808. DOI: 10.1007/s40242-022-2031-z
Article

Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions

Author information +
History +
PDF

Abstract

Responsive polymers have attracted increasing attention for prospective design of smart materials. The development of multifunctional responsive materials is very dependent on polymeric structures that can be manipulated with the change of microenvironment at the molecular level. Herein, we report a type of responsive coordination polymers(RCPs) consisting of dual phenanthroline-oxadiazole(DPO) units and metal Zn2+ ions, which can contract from linear structure into topologically helical structure driven by hydrophobic effect while changing the microenvironment from nonpolar solvent to aqueous media. The symmetry breaking of RCPs was confirmed by circular dichroism(CD) spectra and atomic force microscope(AFM) images, clearly demonstrating the intramolecularly contraction-arisen helicity. Moreover, RCPs can intelligently adapt different microenvironments by changing their conformations, as evidenced by a demonstration of biomimetic lipid bilayer-based vesicle experiments. Furthermore, RCPs show significant concentration-dependent transmembrane transport functions, implying that RCPs are able to span cellular membranes to form channels inside the hydrophobic lipid bilayers. At the same time, the electrophysiological conductance experiments further underpin the biomimetic transport functions and channel-based conduction mechanism of RCPs. This study demonstrates an important paradigm of responsive polymers performing microenvironment-induced conformational change and thereof unique functions, and thus provides valuable insights on the development of functional responsive materials.

Keywords

Responsive polymer / Molecular contraction / Symmetry breaking / Helicity / Transmembrane transport

Cite this article

Download citation ▾
Jing Min, Chenyang Zhang, Shuaiwei Qi, Liyan Wang, Zeyuan Dong. Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions. Chemical Research in Chinese Universities, 2022, 38(3): 803-808 DOI:10.1007/s40242-022-2031-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao Z-Q, Wang G-J. The Chemical Record, 201, 16: 1398.

[2]

Schattling P, Jochum F D, Theato P. Polymer Chemistry, 2014, 5: 25.

[3]

Zhai L. Chemical Society Reviews, 2013, 42: 7148.

[4]

Claassens I E, Barbour L J, Haynes D A. Journal of the American Chemical Society, 2019, 141: 11425.

[5]

Zhang Z, Xu B, Xu B, Jin L, Dai H-L, Rao Y, Ren S. Advanced Materials Interfaces, 2017, 4: 1600769.

[6]

Rybtchinski B. ACS Nano, 2011, 5: 6791.

[7]

Hu J, Liu S. Accounts of Chemical Research, 2014, 47: 2084.

[8]

Miyauchi M, Harada A. Journal of the American Chemical Society, 2004, 126: 11418.

[9]

Wei P, Yan X, Huang F. Chemical Society Reviews, 2015, 44: 815.

[10]

Batten S R, Robson R. Angewandte Chemie International Edition, 1998, 37: 1460.

[11]

Shao L, Yang J, Hua B. Polymer Chemistry, 2018, 9: 1293.

[12]

Winter A, Schubert U S. Chemical Society Reviews, 201, 45: 5311.

[13]

Neal J A, Oldenhuis N J, Novitsky A L, Samson E M, Thrift W J, Ragan R, Guan Z. Angewandte Chemie International Edition, 2017, 56: 15575.

[14]

Mozhdehi D, Neal J A, Grindy S C, Cordeau Y, Ayala S, Holten-Andersen N, Guan Z. Macromolecules, 201, 49: 6310.

[15]

Zhu J, Dong Z, Lei S, Cao L, Yang B, Li W, Zhang Y, Liu J, Shen J. Angewandte Chemie International Edition, 2015, 54: 3097.

[16]

Xu J-F, Chen Y-Z, Wu D, Wu L-Z, Tung C-H, Yang Q-Z. Angewandte Chemie International Edition, 2013, 52: 9738.

[17]

Yang S K, Zimmerman S C. Israel Journal of Chemistry, 2013, 53: 511.

[18]

Gröger G, Meyer-Zaika W, Böttcher C, Gröhn F, Ruthard C, Schmuck C. Journal of the American Chemical Society, 2011, 133: 8961.

[19]

Lafleur R P M, Lou X, Pavan G M, Palmans A R A, Meijer E W. Chemical Science, 2018, 9: 6199.

[20]

Li C-H, Wang C, Keplinger C, Zuo J-L, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You X-Z, Bao Z. Nature Chemistry, 201, 8: 618.

[21]

Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A. Nature Communications, 2012, 3: 1270.

[22]

Kushner A M, Vossler J D, Williams G A, Guan Z. Journal of the American Chemical Society, 2009, 131: 8766.

[23]

Shi P, Miwa E, He J, Sakai M, Seki T, Takeoka Y. ACS Applied Materials & Interfaces, 2021, 13: 55591.

[24]

Chen Y, Guan Z. Journal of the American Chemical Society, 2010, 132: 4577.

[25]

Chung J, Kushner A M, Weisman A C, Guan Z. Nature Materials, 2014, 13: 1055.

[26]

Devaux F, Li X, Sluysmans D, Maurizot V, Bakalis E, Zerbetto F, Huc I, Duwez A-S. Chem, 2021, 7: 1333.

[27]

Qi S, Zhang C, Yu H, Zhang J, Yan T, Lin Z, Yang B, Dong Z. Journal of the American Chemical Society, 2021, 143: 3284.

[28]

Kano K, Fendler J H. Biochimica et Biophysica Acta (BBA) — Biomembranes, 1978, 509: 289.

[29]

Sakai N, Matile S. Journal of Physical Organic Chemistry, 200, 19: 452.

[30]

Lang C, Li W, Dong Z, Zhang X, Yang F, Yang B, Deng X, Zhang C, Xu J, Liu J. Angewandte Chemie International Edition, 201, 55: 9723.

[31]

Fyles T M. Chemical Society Reviews, 2007, 36: 335.

[32]

Matile S, Sakai N. Analytical Methods in Supramolecular Chemistry, 2006 391.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/