Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications

Xiaodong Lian , Chenhao Song , Yapei Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 698 -715.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 698 -715. DOI: 10.1007/s40242-022-2019-8
Review

Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications

Author information +
History +
PDF

Abstract

Double emulsions have been extensively used in scientific researches and industrial applications due to their attractive unique feature of multiple phases. However, constructing droplets with such a complex structure is not a simple task for all time. The simultaneous existence of two contradictory interfaces makes it hard to prepare stable double emulsions in principle and in practice. Over the past century, tremendous efforts have been devoted by myriads of scientists to make progresses in both theory and preparation of double emulsions. In this review, the current understanding of double emulsions is systematically revealed. In addition to emphasizing the corresponding pioneer and landmark works as many as possible, the state-of-the-art achievements will also be discussed. By regulating the oil-water interface with smartly designed interface-active agents in combination with varying the phase volume fractions, the basic theory framework based on the phase inversion from simple emulsions to double emulsions is also summarized. Technical preparation strategies of emulsification are introduced to show the building process of the two contradictory interfaces in one system. Furthermore, some specific biomedical applications of double emulsions are also discussed, which is expected to stimulate further innovation and utilization of double emulsions.

Keywords

Double emulsion / Interface / Phase inversion / Emulsification / Biomedical application

Cite this article

Download citation ▾
Xiaodong Lian, Chenhao Song, Yapei Wang. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chemical Research in Chinese Universities, 2022, 38(3): 698-715 DOI:10.1007/s40242-022-2019-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Israelachvili J. Colloids Surf. A: Physicochem. Eng. Asp., 1994, 91: 1.

[2]

Sawiak L, Bailes K, Harbottle D, Clegg P S. Front. Chem., 2018, 6: 132.

[3]

Lian X, Liao S, Xu X-Q, Zhang S, Wang Y. Macromolecules, 2021, 54: 10279.

[4]

Chappat M. Colloids Surf. A: Physicochem. Eng. Asp., 1994, 91: 57.

[5]

Chen H, Li W, Lin Y, Wang L, Liu X, Huang X. Angew. Chem. Int. Ed., 2020, 59: 16953.

[6]

Huang J, Cheng F, Binks B P, Yang H. J. Am. Chem. Soc., 2015, 137: 15015.

[7]

Florence A T, Whitehill D. J. Colloid Interface Sci., 1981, 79: 243.

[8]

Seifriz W. J. Phys. Chem., 1925, 29: 587.

[9]

Garti N. Colloids Surf. A Physicochem. Eng. Asp., 1997, 123: 233.

[10]

Morais J M, Santos O D H, Nunes J R L, Zanatta C F, Rocha-Filho P A. J. Dispers. Sci. Technol., 2008, 29: 63.

[11]

Schuch A, Deiters P, Henne J, Köhler K, Schuchmann H P. J. Colloid Interface Sci., 2013, 402: 157.

[12]

Costa C, Medronho B, Filipe A, Mira I, Lindman B, Edlund H, Norgren M. Polymers, 2019, 11: 1570.

[13]

Kim S, Kim K, Choi S Q. Soft Matter, 2018, 14: 1094.

[14]

Garti N, Aserin A. Adv. Colloid Interface Sci., 2018, 65: 37.

[15]

Ding S, Serra C A, Vandamme T F, Yu W, Anton N. J. Control. Release, 2019, 295: 31.

[16]

Iqbal M, Zafar N, Fessi H, Elaissari A. Int. J. Pharm., 2015, 496: 173.

[17]

Pal R. Curr. Opin. Colloid Interface Sci., 2011, 16: 41.

[18]

Muschiolik G. Curr. Opin. Colloid Interface Sci., 2007, 12: 213.

[19]

Thompson B, Movsesian N, Cheng C, Karandikar P, Gupta M, Malmstadt N. Methods Cell Biol., 2018, 148: 161.

[20]

Ostwald W., Zeitschrift für Chemie und Industrie der Kolloide, DOI:https://doi.org/10.1007/BF01465754

[21]

Lissant K L. J. Colloid Interface Sci., 196, 22: 462.

[22]

Hales T, Adams M, Bauer G, Dang T D, Harrison J, Hoang L T, Kaliszyk C, Magron V, McLaughlin S, Nguyen T T, Nguyen Q T, Nipkow T, Obua S, Pleso J, Rute J, Solovyev A, Ta T H A, Tran N T, Trieu T D, Urban J, Vu K, Zumkeller R. Forum Math. Pi, 2017, 5: e2.

[23]

Bancroft W D. J. Phys. Chem., 1913, 17: 501.

[24]

Bancroft W D. J. Phys. Chem., 1915, 19: 275.

[25]

Griffin W C. J. Soc. Cosmet. Chem., 1949, 1: 311.

[26]

Griffin W C. J. Soc. Cosmet. Chem., 1954, 5: 249.

[27]

Winsor P A. Solvent Properties of Amphiphilic Compounds, 1954, Londan: Butterworths Scientific Publications

[28]

Saito H, Shinoda K. J. Colloid Interface Sci., 1967, 24: 10.

[29]

Wade W H, Morgan J C, Schechter R S, Jacobson J K, Salager J L. Soc. Pet. Eng. J., 1978, 18: 242.

[30]

Morais J M, Rocha-Filho P A, Burgess D J. Langmuir, 2009, 25: 7954.

[31]

Salager J-L, Márquez L, Peña A A, Rondón M, Silva F, Tyrode E. Ind. Eng. Chem. Res., 2000, 39: 2665.

[32]

Noriaki O. Bull. Chem. Soc. Jpn., 1962, 35: 6.

[33]

Binks B P, Rodrigues J A. Langmuir, 2003, 19: 4905.

[34]

Hong L, Sun G, Cai J, Ngai T. Langmuir, 2012, 28: 2332.

[35]

Wang Z, Liao S, Wang Y. Chin. J. Polym. Sci., 2017, 36: 288.

[36]

Chen Y, Wang Z, Wang D, Ma N, Li C, Wang Y. Langmuir, 201, 32: 11039.

[37]

Lei L, Shi S, Zhu S. J. Colloid Interface Sci., 201, 483: 232.

[38]

Wu J, Ma G-H. Small, 201, 12: 4633.

[39]

Wang Z, Wang Y. Materials, 201, 9: 903.

[40]

Tu F, Lee D. Chem. Commun., 2014, 50: 15549.

[41]

Sheth T, Seshadri S, Prileszky T, Helgeson M E. Nat. Rev. Mater., 2020, 5: 214.

[42]

Matsumoto S, Kita Y, Yonezawa D. J. Colloid Interface Sci., 197, 57: 353.

[43]

Goubran R, Garti N. J. Dispers. Sci. Technol., 1988, 9: 131.

[44]

Garti N, Bisperink C. Curr. Opin. Colloid Interface Sci., 1998, 3: 657.

[45]

Sela Y, Magdassi S, Garti N. Colloids Surf. A: Physicochem. Eng. Asp., 1994, 83: 143.

[46]

Oza K, Frank S. J. Dispers. Sci. Technol., 1989, 10: 163.

[47]

Sekine T, Yoshida K, Matsuzaki F, Yanaki T, Yamaguchi M. J. Surfactants Deterg., 1999, 2: 309.

[48]

Midmore B R, Herrington T M. Progr. Colloid Polym. Sci., 1999, 112: 115.

[49]

Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7: 21.

[50]

Binks B P, Dyab A K F, Fletcher P D I. Multiple Emulsions Stabilised Solely by Nanoparticles, 2002, Paris: CME

[51]

Cunha A G, Mougel J, Cathala B, Berglund L A, Capron I. Langmuir, 2014, 30: 9327.

[52]

Thompson K L, Mable C J, Lane J A, Derry M J, Fielding L, A, Armes S P. Langmuir, 2015, 31: 4137.

[53]

Zou S, Wang C, Gao Q, Tong Z. J. Dispers. Sci. Technol., 2013, 34: 173.

[54]

Wang W, Zhang M-J, Chu L-Y. Curr. Opin. Pharmacol., 2014, 18: 35.

[55]

Matsumoto S, Kohda M, Murata S-I. J. Colloid Interface Sci., 1977, 62: 149.

[56]

Matsumoto S. J. Colloid Interface Sci., 1983, 94: 362.

[57]

Allouche J, Tyrode E, Sadtler V, Choplin L, Salager J-L. Ind. Eng. Chem. Res., 2003, 42: 3982.

[58]

Hanson J A, Chang C B, Graves S M, Li Z, Mason T G, Deming T J. Nature, 2008, 455: 85.

[59]

Besnard L, Marchal F, Paredes J F, Daillant J, Pantoustier N, Perrin P, Guenoun P. Adv. Mater., 2013, 25: 2844.

[60]

Wang Z, Song J, Zhang S, Xu X-Q, Wang Y. Langmuir, 2017, 33: 9160.

[61]

Wang B, Liu T, Chen H, Yin B, Zhang Z, Russell T P, Shi S. Angew. Chem. Int. Ed., 2021, 60: 19626.

[62]

Li Y, Gong S, Guan X, Jiang H, Tao S, Yang C, Ngai T. Adv. Mater. Interfaces, 2021, 8: 2101568.

[63]

Saffarionpour S. JCIS Open, 2021, 3: 100020.

[64]

Okushima S, Nisisako T, Torii T, Higuchi T. Langmuir, 2004, 20: 9905.

[65]

Knight J B, Vishwanath A, Brody J P, Austin R H. Phys. Rev. Lett., 1998, 80: 3863.

[66]

Cohen I, Li H, Hougland J L, Mrksich M, Nagel S R. Science, 2001, 292: 265.

[67]

Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Science, 2005, 308: 537.

[68]

Nie Z, Xu S, Seo M, Lewis P C, Kumacheva E. J. Am. Chem. Soc., 2005, 127: 8058.

[69]

Pannacci N, Bruus H, Bartolo D, Etchart I, Lockhart T, Hennequin Y, Willaime H, Tabeling P. Phys. Rev. Lett., 2008, 101: 164502.

[70]

Li S, Gong X, Nally C S M, Zeng M, Gaule T, Anduix-canto C, Kulak A N, Bawazer L A, McPherson M J, Meldrum F C. RSC Adv., 201, 6: 25927.

[71]

Lin Y-H, Lee C-H, Lee G-B. J. Microelectromech. Syst., 2008, 17: 581.

[72]

Abate A R, Weitz D A. Lab Chip, 2011, 11: 1713.

[73]

Oh H-J, Kim S-H, Baek J-Y, Seong G-H, Lee S-H. J. Micromech. Microeng., 200, 16: 285.

[74]

Chang F-C, Su Y-C. J. Micromech. Microeng., 2008, 18: 065018.

[75]

Kim S-H, Kim B. J. Colloid Interface Sci., 2014, 415: 26.

[76]

Chong D, Liu X, Ma H, Huang G, Han Y L, Cui X, Yan J, Xu F. Microfluid. Nanofluidics, 2015, 19: 1071.

[77]

Liao S, He Y, Wang D, Dong L, Du W, Wang Y. Adv. Mater. Technol., 201, 1: 1600021.

[78]

Liao S, Tao Y, Du W, Wang Y. Langmuir, 2018, 34: 11655.

[79]

Zhu Z, Huang F, Yang C, Si T, Ronald X X. ACS Appl. Mater. Interfaces, 2019, 11: 40932.

[80]

Yuan Q, Williams R A. Adv. Powder Technol., 2013, 25: 122.

[81]

Parhizkar M, Stride E, Edirisinghe M. Lab Chip, 2014, 14: 2437.

[82]

Muschiolik G, Dickinson E. Compr. Rev. Food Sci. Food Saf., 2017, 16: 532.

[83]

Collings A J. Improvements in or Relating to Sustained Release Preparations., 1971.

[84]

Adeyeye C M, Price J C. Drug Dev. Ind. Pharm., 1990, 16: 1053.

[85]

Jiao J, Rhodes D G, Burgess D J. J. Colloid Interface Sci., 2002, 250: 444.

[86]

Walstra P. Encyclopedia of Emulsion Technology, 1996.

[87]

Mezzenga R, Folmer B M, Hughes E. Langmuir, 2004, 20: 3574.

[88]

Delample M, Silva F D, Leal-Calderon F. Food Hydrocoll., 2014, 38: 11.

[89]

Nollet M, Mercé M, Laurichesse E, Pezon A, Soubabère O, Besse S, Schmitt V. Soft Matter, 201, 12: 3412.

[90]

Sameh H, Wafa E, Sihem B, Fernando L-C. Langmuir, 2012, 28: 17597.

[91]

Gao F, Su Z-G, Wang P, Ma G-H. Langmuir, 2009, 25: 3832.

[92]

Bae J, Russell T-P, Hayward R C. Angew. Chem. Int. Ed., 2014, 53: 8240.

[93]

Gao N, Cui J, Zhang W, Feng K, Liang Y, Wang S, Wang P, Zhou K, Li G. Chem. Sci., 2019, 10: 7887.

[94]

Li R, Wang Z, Tao X, Jia J, Lian X, Wang Y. ACS Macro Lett., 2020, 9: 985.

[95]

Li R, Wang Z, Han P, He Y, Zhang X, Wang Y. Chem. Eur. J., 2017, 23: 17889.

[96]

Wang Z, Lian X, Li R, Tao X, Wang Y. Chem. Eur. J., 2019, 25: 13811.

[97]

Zhu J, Hayward R C. J. Colloid Interface Sci., 2012, 365: 275.

[98]

Gad J., Arch. Anat. Physiol., 1878, 181

[99]

Zhu J, Hayward R C. J. Am. Chem. Soc., 2008, 130: 7496.

[100]

Chen X, Yang X, Song D-P, Men Y-F, Li Y. Macromolecules, 2021, 54: 3668.

[101]

Granek R, Ball R C, Cates M E. J. Phys. B: At. Mol. Phys., 1993, 3: 829.

[102]

López-Montilla J C, Herrera-Morales P E, Pandey S, Shah D O. J. Dispers. Sci. Technol., 2002, 23: 219.

[103]

Karal-Yılmaz O, Serhatlı M, Baysal K, Baysal B M. J. Microencapsul., 2011, 28: 46.

[104]

Jiang H, Zhang T, Smits J, Huang X, Maas M, Yin S, Ngai T. Food Hydrocoll., 2021, 111: 106405.

[105]

Jelena M, Katarina Š, Svetlana I, Jelena Đ. Lek. Sirov., 2019, 39: 76.

[106]

Patravale V B, Mandawgade S D. Int. J. Cosmet. Sci., 2008, 30: 19.

[107]

Herbert W J. Lancet, 1965, 286: 771.

[108]

Patil P K, Bayry J, Ramakrishna C, Hugar B, Misra L D, Prabhudas K, Natarajan C. J. Clin. Microbiol., 2020, 40: 11.

[109]

Liau J J, Hook S, Prestidge C A, Barnes T J. Eur. J. Pharm. Biopharm., 2015, 97: 15.

[110]

Rathogwa N M, Scott K A, Opperman P, Theron J, Maree F F. Vaccines, 2021, 9: 996.

[111]

Engel R H, Riggi S J, Fahrenbach M J. Nature, 1968, 219: 856.

[112]

Chen C-C, Tu Y-Y, Chang H-M. J. Agric. Food Chem., 1999, 47: 407.

[113]

Garti N, Frenkel M, Shwartz R. J. Dispers. Sci. Technol., 1983, 4: 237.

[114]

Kim C-K, Kim S-C, Shin H-J, Kim K M, Oh K-H, Lee Y-B, Oh I-J. Int. J. Pharm., 1995, 124: 61.

[115]

Benichou A, Aserin A, Garti N. Polym. Adv. Technol., 2003, 13: 1019.

[116]

Okochi H, Nakano M. Adv. Drug Deliv., 2000, 45: 5.

[117]

Ohwaki T, Nakamura M, Ozawa H, Kawasgima Y, Hino T, Takeuchi H, Niwa T. Chem. Pharm. Bull., 1993, 41: 741.

[118]

Laugel C, Baillet A, Piemi Y M P, Marty J P, Ferrier D. Int. J. Pharm., 1998, 160: 109.

[119]

Laugel C, Baillet A, Ferrier D, Grossiord J L, Marty J P. Int. J. Cosmet. Sci., 1998, 20: 183.

[120]

Yoshida K, Sekine T, Matsuzaki F, Yanaki T, Yamaguchi M. J. Am. Oil Chem. Soc., 1999, 76: 1.

[121]

Dickinson E. Food Biophys., 2011, 6: 1.

[122]

Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X. Int. J. Food Sci. Technol., 2011, 47: 248.

[123]

Wang H, Zhao Y, Wu Y, Hu Y-L, Nan K, Nie G, Chen H. Biomaterials, 2011, 32: 8281.

[124]

J-M, Wang X, Marin-Muller C, Wang H, Lin P H, Yao Q, Chen C. Expert Rev. Mol. Diagn., 2009, 9: 325.

[125]

Ogawa Y, Yamamoto M, Okada H, Yashiki T, Shimamoto T. Chem. Pharm. Bull., 1988, 36: 1095.

[126]

Ogawa Y, Yamamoto M, Takada S, Okada H, Shimamoto T. Chem. Pharm. Bull., 1988, 36: 1502.

[127]

O’Donnell P B, McGinity J W. Adv. Drug Deliv., 1997, 28: 25.

[128]

Blanco M D, Alonso M J. Eur. J. Pharm. Biopharm., 1997, 43: 287.

[129]

Panigrahi D, Sahu P K, Swain S S, Verma R K. SN Appl. Sciences, 2021, 3: 638.

[130]

Cohen S, Yoshioka T, Lucarelli M, Hwang L H, Langer R. Pharm. Res., 1991, 8: 713.

[131]

Singh V, Singh S, Das S, Kumar A, Self W T, Seal S. Nanoscale, 2012, 4: 2597.

[132]

Liang S, Li J, Xu Q, Man J, Chen H. Small, 2018, 14: 1800613.

[133]

Huang F, Liao W-C, Sohn Y S, Nechushtai R, Lu C-H, Willner I. J. Am. Chem. Soc., 201, 28: 8936.

[134]

Liang K, Such G K, Zhu Z, Yan Y, Lomas H, Caruso F. Adv. Mater., 2011, 23: 273.

[135]

Li R, Lian X, Wang Z, Wang Y. Chem. Eur. J., 2018, 25: 183.

[136]

Seiffert S, Thiele J, Abate A R, Weitz D A. J. Am. Chem. Soc., 2010, 132: 6606.

[137]

Zhang W, Qu L, Pei H, Qin Z, Didier J, Wu Z, Bobe F, Ingber D E, Weitz D A. Small, 2019, 15: 1903087.

[138]

Galogahi F M, Zhu Y, An H, Nguyen N-T. J. Sci.-Adv. Mater. Dev., 2020, 5: 417.

[139]

Cai Y, Chen Y, Hong X, Liu Z, Yuan W, Hu Z. Int. J. Nanomedicine, 2013, 8: 1111.

[140]

Fan J-B, Huang C, Jiang L, Wang S. J. Mater. Chem. B, 2013, 1: 2222.

[141]

Xia Y, Na X, Wu J, Ma G. Adv. Mater., 2019, 31: 1801159.

[142]

Gelli R, Mugnaini G, Bolognesi T, Bonini M. Langmuir, 2021, 37: 12781.

[143]

Sun G-Y, Shi Q-H, Sun Y. J. Chromatogr. A, 2004, 1061: 159.

[144]

Kim I, Byeon H J, Kim T H, Lee E S, Oh K T, Shin B S, Lee K C, Youn Y S. Biomaterials, 2012, 33: 5574.

[145]

Hu Y, Zou S, Yang Y, Tong Z, Wang C. Macromol. Chem. Phys., 2015, 216: 714.

[146]

Lee J, Oh Y J, Lee S K, Lee K Y. J. Control. Release, 2010, 146: 61.

[147]

Huang X, Fang R, Wang D, Wang J, Xu H, Wang Y, Zhang X. Small, 2015, 11: 1537.

[148]

Zhang X, Xu H, Dong Z, Wang Y, Liu J, Shen J. J. Am. Chem. Soc., 2004, 126: 10556.

[149]

Cao Y, Wang Z, Liao S, Wang J, Wang Y. Chem. Eur. J., 2015, 22: 1152.

[150]

Lee J, Sohn J W, Zhang Y, Leong K W, Pisetsky D, Sullenger B A. Proc. Natl. Acad. Sci. USA, 2011, 108: 14055.

[151]

Qian Q, Huang X, Zhang X, Xie Z, Wang Y. Angew. Chem. Int. Ed., 2013, 52: 10625.

[152]

Wang J, Zhao J, Li Y, Yang M, Chang Y-Q, Zhang J-P, Sun Z, Wang Y. ACS Macro Lett., 2015, 4: 392.

[153]

Supramaniam P, Ces O, Salehi-Reyhani A. Micromachines, 2019, 10: 299.

[154]

Nossal G J V, Lederberg J. Nature, 1958, 181: 1419.

[155]

Chen F, Zhan Y, Geng T, Lian H, Xu P, Liu C. Anal. Chem., 2011, 83: 8816.

[156]

Zhang Y, Ho Y-P, Chiu Y-L, Chang H F, Chlebina B, Schuhmann T, You L, Leong K W. Biomaterials, 2013, 34: 4564.

[157]

Nood E V, Vrizez A, Nieuwdorp M, Fuentes S, Zoetendal E G, Vos W M D, Visser C E, Kuijper E J, Bartelsman J F W M, Tijssen J G P, Speelman P, Dijkgraaf M G W, Keller J J. N. Engl. J. Med., 2013, 368: 407.

[158]

Ark K C H V D, Nugroho A D W, Berton-Carabin C, Wang C, Belzer C, Vos W M D, Schroen K. Food Res. Int., 2017, 102: 372.

[159]

Pimentel-González D J, Campos-Montiel R G, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter E J. Food Res. Int., 2009, 42: 292.

[160]

Shima M, Morita Y, Yamashita M, Adachi S. Food Hydrocoll., 200, 20: 1164.

[161]

Rakszewska A, Tel J, Chokkalingam V, Huck W T S. NPG Asia Mater., 2014, 6: 133.

[162]

Wang X, Jiang B, Sun H, Zheng D, Zhang Z, Yan L, Li E, Wu Y, Xu R-H. Theranostics, 2019, 9: 6112.

[163]

Chan H F, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Leong K W. Sci. Rep., 2013, 3: 3462.

[164]

Kiilerich-Pedersen K, Rozlosnik N. Diagnostics, 2012, 2: 83.

[165]

Fattahi P, Rahimian A, Slama M Q, Gwon K, Gonzalez-Suarez A M, Wolf J, Baskaran H, Duffy C D, Stybayeva G, Peterson Q P, Revzin A. Sci. Rep., 2021, 11: 7177.

[166]

Suryaprakash S, Lao Y-H, Cho H-Y, Li M, Ji H Y, Shao D, Hu H, Quek C H, Huang D, Mintz R L, Bagó J R, Hingtgen S D, Lee K-B, Leong K W. Nano Lett., 2019, 19: 1701.

[167]

Sivalingam J, Oh S. Cytotherapy, 2019, 21: 56.

[168]

Veres A, Faust A L, Bushnell H L, Engquist E N, Kenty J H-R, Harb G, Poh Y-C, Sintov E, Gürtler M, Pagliuca F W, Peterson Q P, Melton D A. Nature, 2019, 569: 368.

[169]

Halloin C, Schwanke K, Löbel W, Franke A, Szepes M, Biswanath S, Wunderlich S, Merkert S, Weber N, Osten F, Roche J D L, Polten F, Wollert K C, Kraft T, Fischer M, Martin U, Gruh I, Kempf H, Zweigerdt R. Stem Cell Reports, 2019, 13: 366.

[170]

Rigamonti A, Repetti G G, Sun C, Price F D, Reny D C, Rapino F, Weisinger K, Benkler C, Peterson Q P, Davidow L S, Hansson E M, Rubin L L. Stem Cell Reports, 201, 6: 993.

[171]

Bartley B A, Kim K, Medley J K, Sauro H M. Biophys., 2017, 112: 1050.

[172]

Meng F, Ellis T. Nat. Commun., 2020, 11: 5174.

[173]

Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R-Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova E A, Young L, Qi Z-Q, Segall-Shapiro T H, Calvey C H, Parmar P P, Hutchison I C A, Smith H O, Venter J C. Science, 2010, 329: 52.

[174]

Tsuji G, Sunami T, Ichihashi N. J. Biosci. Bioeng., 2018, 126: 540.

[175]

Arriaga L R, Datta S S, Kim S-H, Amstad E, Kodger T E, Monroy F, Weitz D A. Small, 2013, 10: 950.

[176]

Kim S-H, Kim J W, Cho J-C, Weitz D A. Lab Chip, 2011, 11: 3162.

[177]

Ho K K Y, Murray V L, Liu A P. Methods Cell Biol., 2015, 128: 303.

[178]

Caschera F, Lee J W, Ho K K Y, Liu A P, Jewett M C. Chem. Commun., 201, 52: 5467.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/