Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence

Zhangwu Chen , Feng Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 798 -802.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 798 -802. DOI: 10.1007/s40242-022-2015-z
Article

Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence

Author information +
History +
PDF

Abstract

We report a donor-acceptor(D-A) type non-luminescent neutral radical, tris-2,4,6-trichlorophenylmethyl-N, N-dimethyl-9H-carbazol-3-amine(TTM-Cz-DMA). The results of cyclic voltammetry and quantum chemistry calculation confirm TTM-Cz-DMA has the non-Aufbau electronic structure, which means the singly occupied molecular orbital(SOMO) lies below the highest doubly occupied molecular orbital(HOMO). The non-Aufbau electronic structure changes to the Aufbau electronic structure after protonation and exhibits proton-responsive turn-on fluorescence, which is totally reversible by deprotonation. The dihedral angle between donor and acceptor moieties of TTM-Cz-DMA in excited state reduces from 88° to 62° after protonation, causing the turn-on fluorescence. Our results offer a viewing angle to understand the luminescence of radicals and provide a possible application of proton detection.

Keywords

Luminescent radical / Singly occupied molecular orbital (SOMO)-highest doubly occupied molecular orbital(HOMO) conversion / Non-Aufbau / Turn-on fluorescence

Cite this article

Download citation ▾
Zhangwu Chen, Feng Li. Proton-induced Conversion from Non-Aufbau to Aufbau Electronic Structure of an Organic Radical with Turn-on Fluorescence. Chemical Research in Chinese Universities, 2022, 38(3): 798-802 DOI:10.1007/s40242-022-2015-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J. Org. Chem., 2007, 72(20): 7523.

[2]

Hattori Y, Kusamoto T, Nishihara H. Angew. Chem. Int. Ed., 2014, 53(44): 11845.

[3]

Schafer J, Holzapfel M, Mladenova B, Kattnig D, Krummenacher I, Braunschweig H, Grampp G, Lambert C. J. Am. Chem. Soc., 2017, 139(17): 6200.

[4]

Velasco D, Reig M, Gozalvez C, Julia L, Grazulevicius J V, Jankauskas V, Fajari L, Gaidelis V. Chem. Eur. J., 201, 24(51): 18551.

[5]

Ballesteros P, Cuadrado A, Gilabert A, Fajari L, Sires I, Brillas E, Almajano M P, Velasco D, Anglada J M, Julia L. Phys. Chem. Chem. Phys., 2019, 21(36): 20225.

[6]

Bobet A, Cuadrado A, Fajarí L, Sirés I, Brillas E, Almajano M P, Jankauskas V, Velasco D, Juliá L. J. Phys. Org. Chem., 2019, 32(9): e3974.

[7]

Kimura S, Kusamoto T, Kimura S, Kato K, Teki Y, Nishihara H. Angew. Chem. Int. Ed., 2018, 57(39): 12711.

[8]

Liu C H, Hamzehpoor E, Sakai-Otsuka Y, Jadhav T, Perepichka D F. Angew. Chem. Int. Ed., 2020, 51(59): 23030.

[9]

Peng Q M, Obolda A, Zhang M, Li F. Angew. Chem. Int. Ed., 2015, 54(24): 7091.

[10]

Abdurahman A, Hele T J H, Gu Q Y, Zhang J B, Peng Q M, Zhang M, Friend R H, Li F, Evans E W. Nat. Mater., 2020, 19(11): 1224.

[11]

Cui Z Y, Ye S F, Wang L, Guo H Q, Obolda A, Dong S Z, Chen Y X, Ai X, Abdurahman A, Zhang M, Wang L, Li F. J. Phys. Chem. Lett., 2018, 9(22): 6644.

[12]

Ai X, Evans E W, Dong S Z, Gillett A J, Guo H Q, Chen Y X, Hele T J H, Friend R H, Li F. Nature, 2018, 563(7732): 536.

[13]

Ai X, Chen Y X, Feng Y T, Li F. Angew. Chem. Int. Ed., 2018, 11(57): 2869.

[14]

Abdurahman A, Chen Y X, Ai X, Ablikim O, Gao Y, Dong S Z, Li B, Yang B, Zhang M, Li F. J. Mater. Chem. C, 2018, 6(42): 11248.

[15]

Zhao Y H, Abdurahman A, Zhang Y M, Zheng P, Zhang M, Li F. CCS. Chem., 2021, 3: 938.

[16]

Cui Z Y, Abdurahman A, Ai X, Li F. CCS Chem., 2020, 2(4): 1129.

[17]

Simao C, Mas-Torrent M, Crivillers N, Lloveras V, Artes J M, Gorostiza P, Veciana J, Rovira C. Nat. Chem., 2011, 3(5): 359.

[18]

Han J L, Jiang Y Q, Obolda A, Duan P F, Li F, Liu M H. J. Phys. Chem. Lett., 2017, 8: 5865.

[19]

Kimura S, Kimura S, Nishihara H, Kusamoto T. Chem. Commun., 2020, 56(76): 11195.

[20]

Morita Y, Suzuki S, Fukui K, Nakazawa S, Kitagawa H, Kishida H, Okamoto H, Naito A, Sekine A, Ohashi Y, Shiro M, Sasaki K, Shiomi D, Sato K, Takui T, Nakasuji K. Nat. Mater., 2008, 7(1): 48.

[21]

Gryn’ova G, Coote M L. J. Am. Chem. Soc., 2013, 135(41): 15392.

[22]

Franchi P, Mezzina E, Lucarini M. J. Am. Chem. Soc., 2014, 136(4): 1250.

[23]

Wang Y, Zhang H, Pink M, Olankitwanit A, Rajca S, Rajca A. J. Am. Chem. Soc., 201, 138(23): 7298.

[24]

Guo H Q, Peng Q M, Chen X K, Gu Q Y, Dong S Z, Evans E W, Gillett A J, Ai X, Zhang M, Credgington D, Coropceanu V, Friend R H, Brédas J L, Li F. Nat. Mater., 2019, 18: 977.

[25]

Tanushi A, Kimura S, Kusamoto T, Tominaga M, Kitagawa Y, Nakano M, Nishihara H. J. Phys. Chem. C, 2019, 123(7): 4417.

[26]

So S, Kirk B B, Wille U, Trevitt A J, Blanksby S J, da Silva G. Phys. Chem. Chem. Phys., 2020, 22(4): 2130.

[27]

Gryn’ova G, Marshall D L, Blanksby S J, Coote M L. Nat. Chem., 2013, 5(6): 474.

[28]

Kasemthaveechok S, Abella L, Jean M, Cordier M, Roisnel T, Vanthuyne N, Guizouarn T, Cador O, Autschbach J, Crassous J, Favereau L. J. Am. Chem. Soc., 2020, 142(48): 20409.

[29]

Murata R, Wang Z, Miyazawa Y, Antol I, Yamago S, Abe M. Org. Lett., 2021, 23(13): 4955.

[30]

Wang Z, Murata R, Abe M. ACS Omega, 2021, 6(35): 22773.

[31]

Long G L, Winefordner J D. Anal. Chem., 1983, 55: 712A.

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/