Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs

Shuai Bi , Fancheng Meng , Zixing Zhang , Dongqing Wu , Fan Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 382 -395.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 382 -395. DOI: 10.1007/s40242-022-2010-4
Review

Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs

Author information +
History +
PDF

Abstract

Vinylene-linked covalent organic frameworks(COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, permanent porosity, ultrahigh chemical stability, and extraordinary optoelectronic properties. Over the past 5 years, this kind of material has been witnessed rapid development either in chemical synthesis or in potential applications. In this review, we summarize the chemistry to synthesize vinylene-linked COFs, especially the synthetic strategies involving activation of aryl methyl groups for condensation reaction. We then scrutinize the state-of-the-art development in properties and functions of this kind of COFs. Our own opinions on the further development of the vinylene-linked COFs are also presented for discussion.

Keywords

Covalent organic framework(COF) / Vinylene linkage / Stability / π-Conjugated structure / Semiconducting property

Cite this article

Download citation ▾
Shuai Bi, Fancheng Meng, Zixing Zhang, Dongqing Wu, Fan Zhang. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chemical Research in Chinese Universities, 2022, 38(2): 382-395 DOI:10.1007/s40242-022-2010-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Diercks C S, Yaghi O M. Science, 2017, 355: eaal1585.

[2]

Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Chem. Soc. Rev., 2019, 48: 488.

[3]

Liu Y, Zhou W, Teo W L, Wang K, Zhang L, Zeng Y, Zhao Y. Chem., 2020, 6: 3172.

[4]

Wang Z, Zhang S, Chen Y, Zhang Z, Ma S. Chem. Soc. Rev., 2020, 49: 708.

[5]

Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Chem. Soc. Rev., 2019, 48: 2665.

[6]

Ding S-Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[7]

Sharma R K, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zboøil R, Varma R S, Antonietti M, Gawande M B. Mater. Horiz., 2020, 7: 411.

[8]

Haug W K, Moscarello E M, Wolfson E R, McGrier P L. Chem. Soc. Rev., 2020, 49: 839.

[9]

Meng Z, Mirica K A. Chem. Soc. Rev., 2021, 50: 13498.

[10]

Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem. Soc. Rev., 2020, 49: 3565.

[11]

Chen X, Geng K, Liu R, Tan K T, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Angew. Chem., Int. Ed., 2020, 59: 5050.

[12]

Wang D-G, Qiu T, Guo W, Liang Z, Tabassum H, Xia D, Zou R. Energy Environ. Sci., 2021, 14: 688.

[13]

Lin C-Y, Zhang D, Zhao Z, Xia Z. Adv. Mater., 2018, 30: 1703646.

[14]

Feng X, Ding X, Jiang D. Chem. Soc. Rev., 2012, 41: 6010.

[15]

Zhao X, Pachfule P, Thomas A. Chem. Soc. Rev., 2021, 50: 6871.

[16]

Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[17]

Haase F, Lotsch B V. Chem. Soc. Rev., 2020, 49: 8469.

[18]

Liu R, Tan K T, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Chem. Soc. Rev., 2021, 50: 120.

[19]

Liang R-R, Jiang S-Y, A R-H, Zhao X. Chem. Soc. Rev., 2020, 49: 3920.

[20]

Li X, Yadav P, Loh K P. Chem. Soc. Rev., 2020, 49: 4835.

[21]

Guan X, Chen F, Fang Q, Qiu S. Chem. Soc. Rev., 2020, 49: 1357.

[22]

Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, Cui Y. Chem. Soc. Rev., 2020, 49: 6248.

[23]

Jin Y, Hu Y, Ortiz M, Huang S, Ge Y, Zhang W. Chem. Soc. Rev., 2020, 49: 4637.

[24]

Lyle S J, Waller P J, Yaghi O M. Trends Chem., 2019, 1: 172.

[25]

Diercks C S, Kalmutzki M J, Yaghi O M. Molecules, 2017 22.

[26]

Jackson K T, Reich T E, El-Kaderi H M. Chem. Commun., 2012, 48: 8823.

[27]

Roeser J, Prill D, Bojdys M J, Fayon P, Trewin A, Fitch A N, Schmidt M U, Thomas A. Nat. Chem., 2017, 9: 977.

[28]

Hunt J R, Doonan C J, LeVangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130: 11872.

[29]

Li Y, Chen W, Xing G, Jiang D, Chen L. Chem. Soc. Rev., 2020, 49: 2852.

[30]

Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev., 2020, 120: 8814.

[31]

Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 4570.

[32]

Rodríguez-San-Miguel D, Montoro C, Zamora F. Chem. Soc. Rev., 2020, 49: 2291.

[33]

Segura J L, Royuela S, Mar Ramos M. Chem. Soc. Rev., 2019, 48: 3903.

[34]

Wei P-F, Qi M-Z, Wang Z-P, Ding S-Y, Yu W, Liu Q, Wang L-K, Wang H-Z, An W-K, Wang W. J. Am. Chem. Soc., 2018, 140: 4623.

[35]

Seo J-M, Noh H-J, Jeong H Y, Baek J-B. J. Am. Chem. Soc., 2019, 141: 11786.

[36]

Waller P J, AlFaraj Y S, Diercks C S, Jarenwattananon N N, Yaghi O M. J. Am. Chem. Soc., 2018, 140: 9099.

[37]

Haase F, Troschke E, Savasci G, Banerjee T, Duppel V, Dörfler S, Grundei M M J, Burow A M, Ochsenfeld C, Kaskel S, Lotsch B V. Nat. Commun., 2018, 9: 2600.

[38]

Zhuang X, Zhao W, Zhang F, Cao Y, Liu F, Bi S, Feng X. Polym. Chem., 201, 7: 4176.

[39]

Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem., 2019, 11: 587.

[40]

Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D. Nat. Commun., 2013, 4: 2736.

[41]

Zhang B, Wei M, Mao H, Pei X, Alshmimri S A, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2018, 140: 12715.

[42]

Wang P-L, Ding S-Y, Zhang Z-C, Wang Z-P, Wang W. J. Am. Chem. Soc., 2019, 141: 18004.

[43]

Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3: 400.

[44]

Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Chem. Soc. Rev., 2020, 49: 4135.

[45]

Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Coord. Chem. Rev., 2021, 429: 213616.

[46]

Wang L, Zeng C, Xu H, Yin P, Chen D, Deng J, Li M, Zheng N, Gu C, Ma Y. Chem Sci., 2019, 10: 1023.

[47]

Keller N, Bein T. Chem. Soc. Rev., 2021, 50: 1813.

[48]

Khattak A M, Ghazi Z A, Liang B, Khan N A, Iqbal A, Li L, Tang Z. J. Mater. Chem. A, 201, 4: 16312.

[49]

Xu S, Wang G, Biswal B P, Addicoat M, Paasch S, Sheng W, Zhuang X, Brunner E, Heine T, Berger R, Feng X. Angew. Chem., Int. Ed., 2019, 58: 849.

[50]

Gu R, Flidrova K, Lehn J-M. J. Am. Chem. Soc., 2018, 140: 5560.

[51]

König N F, Mutruc D, Hecht S. J. Am. Chem. Soc., 2021, 143: 9162.

[52]

Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Nat. Commun., 2019, 10: 2467.

[53]

Bi S, Lu C, Zhang W, Qiu F, Zhang F. J. Energy Chem., 2018, 27: 99.

[54]

Li X. Mater. Chem. Front., 2021, 5: 2931.

[55]

He T, Geng K, Jiang D. Trends Chem., 2021, 3: 431.

[56]

Xu S, Richter M, Feng X. Acc. Mater. Res., 2021, 2: 252.

[57]

Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Chem. Soc. Rev., 2020, 49: 1344.

[58]

Springer M A, Liu T-J, Kuc A, Heine T. Chem. Soc. Rev., 2020, 49: 2007.

[59]

Knoevenagel E. Justus Liebigs Ann. Chem., 1894, 281: 25.

[60]

Hann A C O, Lapworth A. J. Chem. Soc., Trans., 1904, 85: 46.

[61]

Cope A C. J. Am. Chem. Soc., 1937, 59: 2327.

[62]

Boucard V. Macromolecules, 2001, 34: 4308.

[63]

Mase N, Horibe T. Org. Lett., 2013, 15: 1854.

[64]

Zacuto M J. J. Org. Chem., 2019, 84: 6465.

[65]

Mukaiyama T. Org. React., 1982, 28: 203.

[66]

Heathcock C H. Trost B M, Fleming I. Comprehensive Organic Synthesis, 1991, Oxford: Pergamon 133.

[67]

Pastoetter D L, Xu S, Borrelli M, Addicoat M, Biswal B P, Paasch S, Dianat A, Thomas H, Berger R, Reineke S, Brunner E, Cuniberti G, Richter M, Feng X. Angew. Chem. Int. Ed., 2020, 59: 23620.

[68]

He Y, Ma W, Yang N, Liu F, Chen Y, Liu H, Zhu X. Chem. Commun., 2021, 57: 7557.

[69]

Jin E, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673.

[70]

Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D. Nat. Commun., 2018, 9: 4143.

[71]

Zhang Q, Dai M, Shao H, Tian Z, Lin Y, Chen L, Zeng X C. ACS Appl. Mater. Interfaces, 2018, 10: 43595.

[72]

Jin E, Lan Z, Jiang Q, Geng K, Li G, Wang X, Jiang D. Chem., 2019, 5: 1632.

[73]

Becker D, Biswal B P, Kaleńczuk P, Chandrasekhar N, Giebeler L, Addicoat M, Paasch S, Brunner E, Leo K, Dianat A, Cuniberti G, Berger R, Feng X. Chem.-Eur. J., 2019, 25: 6562.

[74]

Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Angew. Chem., Int. Ed., 2019, 58: 5376.

[75]

Chen R, Shi J-L, Ma Y, Lin G, Lang X, Wang C. Angew. Chem., Int. Ed., 2019, 58: 6430.

[76]

Jin E, Geng K, Lee K H, Jiang W, Li J, Jiang Q, Irle S, Jiang D. Angew. Chem. Int. Ed., 2020, 59: 12162.

[77]

Shi J-L, Chen R, Hao H, Wang C, Lang X. Angew. Chem. Int. Ed., 2020, 59: 9088.

[78]

Mo C, Yang M, Sun F, Jian J, Zhong L, Fang Z, Feng J, Yu D. Adv. Sci., 2020, 7: 1902988.

[79]

Xu S, Sun H, Addicoat M, Biswal B P, He F, Park S, Paasch S, Zhang T, Sheng W, Brunner E, Hou Y, Richter M, Feng X. Adv. Mater., 2020, 33: 2006274.

[80]

Cui W-R, Li F-F, Xu R-H, Zhang C-R, Chen X-R, Yan R-H, Liang R-P, Qiu J-D. Angew. Chem., Int. Ed., 2020, 59: 17684.

[81]

Xu S, Li Y, Biswal B P, Addicoat M A, Paasch S, Imbrasas P, Park S, Shi H, Brunner E, Richter M, Lenk S, Reineke S, Feng X. Chem. Mater., 2020, 32: 7985.

[82]

Fu Z, Wang X, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L, Li X, Vogel A, Clowes R, Bilton M, Chen L, Sprick R S, Cooper A I. Chem. Sci., 2020, 11: 543.

[83]

Yuan C, Fu S, Yang K, Hou B, Liu Y, Jiang J, Cui Y. J. Am. Chem. Soc., 2020, 143: 369.

[84]

Cui W-R, Zhang C-R, Jiang W, Li F-F, Liang R-P, Liu J, Qiu J-D. Nat. Commun., 2020, 11: 436.

[85]

Bu R, Zhang L, Liu X-Y, Yang S-L, Li G, Gao E-Q. ACS Appl. Mater. Interfaces, 2021, 13: 26431.

[86]

Su Y, Wan Y, Xu H, Otake K-i, Tang X, Huang L, Kitagawa S, Gu C. J. Am. Chem. Soc., 2020, 142: 13316.

[87]

Wang Y, Hao W, Liu H, Chen R, Pan Q, Li Z, Zhao Y. Nat. Commun., 2022, 13: 100.

[88]

Jin E, Geng K, Fu S, Addicoat M A, Zheng W, Xie S, Hu J-S, Hou X, Wu X, Jiang Q, Xu Q-H, Wang H I, Jiang D. Angew. Chem., Int. Ed., 2021, 61: e202115020.

[89]

Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539.

[90]

Greenham N C, Moratti S C, Bradley D D C, Friend R H, Holmes A B. Nature, 1993, 365: 628.

[91]

Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Bredas J L, Logdlund M, Salaneck W R. Nature, 1999, 397: 121.

[92]

Grimsdale A C, Leok Chan K, Martin R E, Jokisz P G, Holmes A B. Chem. Rev., 2009, 109: 897.

[93]

Bi S, Thiruvengadam P, Wei S, Zhang W, Zhang F, Gao L, Xu J, Wu D, Chen J-S, Zhang F. J. Am. Chem. Soc., 2020, 142: 11893.

[94]

Xu J, Yang C, Bi S, Wang W, He Y, Wu D, Liang Q, Wang X, Zhang F A. . Chem., Int. Ed., 2020, 59: 23845.

[95]

Cui W-R, Zhang C-R, Xu R-H, Chen X-R, Yan R-H, Jiang W, Liang R-P, Qiu J-D. ACS EST Water, 2021, 1: 440.

[96]

Attias A-J, Cavalli C, Donnio B, Guillon D, Hapiot P, Malthete J. Chem. Mater., 2002, 14: 375.

[97]

Wang H, Li Z, Shao P, Liang Y, Wang H, Qin J, Gong Q. New J. Chem., 2005, 29: 792.

[98]

Xu J, He Y, Bi S, Wang M, Yang P, Wu D, Wang J, Zhang F. Angew. Chem. Int. Ed., 2019, 58: 12065.

[99]

Li Y-J, Cui W-R, Jiang Q-Q, Wu Q, Liang R-P, Luo Q-X, Qiu J-D. Nat. Commun., 2021, 12: 4735.

[100]

Cui Y Z, Fang Q, Lei H, Xue G, Yu W T. Chem. Phys. Lett., 2003, 377: 507.

[101]

Lyu H, Diercks C S, Zhu C, Yaghi O M. J. Am. Chem. Soc., 2019, 141: 6848.

[102]

Wei S, Zhang W, Qiang P, Yu K, Fu X, Wu D, Bi S, Zhang F. J. Am. Chem. Soc., 2019, 141: 14272.

[103]

Acharjya A, Longworth-Dunbar L, Roeser J, Pachfule P, Thomas A. J. Am. Chem. Soc., 2020, 142: 14033.

[104]

Acharjya A, Pachfule P, Roeser J, Schmitt F-J, Thomas A. Angew. Chem., Int. Ed., 2019, 58: 14865.

[105]

Jadhav T, Fang Y, Liu C-H, Dadvand A, Hamzehpoor E, Patterson W, Jonderian A, Stein R S, Perepichka D. F., J. Am. Chem. Soc., 2020, 142: 8862.

[106]

Jadhav T, Fang Y, Patterson W, Liu C-H, Hamzehpoor E, Perepichka D F. Angew. Chem., Int. Ed., 2019, 58: 13753.

[107]

Yang S, Streater D, Fiankor C, Zhang J, Huang J. J. Am. Chem. Soc., 2021, 143: 1061.

[108]

Wang Z, Yang Y, Zhao Z, Zhang P, Zhang Y, Liu J, Ma S, Cheng P, Chen Y, Zhang Z. Nat. Commun., 2021, 12: 1982.

[109]

Sowmiah S, Esperança J M S S, Rebelo L P N, Afonso C A M. Org. Chem. Front., 2018, 5: 453.

[110]

Namboodiri C K R, Bisht P B, Mukkamala R, Chandra B, Aidhen I S. Chem. Phys., 2013, 415: 190.

[111]

He F-S, Ye S, Wu J. ACS Catal., 2019, 9: 8943.

[112]

Li Y, Wang H, Li X. Chem. Sci., 2020, 11: 12249.

[113]

Xu X, Qiu W, Zhou Q, Tang J, Yang F, Sun Z, Audebert P. J. Phys. Chem. B, 2008, 112: 4913.

[114]

Rudat B, Birtalan E, Thomé I, Kölmel D K, Horhoiu V L, Wissert M D, Lemmer U, Eisler H-J, Balaban T S, Bräse S. J. Phys. Chem. B, 2010, 114: 13473.

[115]

Lin J, Bi S, Fan Z, Fu Z, Meng Z, Hou Z, Zhang F. Polym. Chem., 2021, 12: 1661.

[116]

Meng F, Bi S, Sun Z, Jiang B, Wu D, Chen J-S, Zhang F. Angew. Chem., Int. Ed, 2021, 60: 13614.

[117]

Bi S, Zhang Z, Meng F, Wu D, Chen J-S, Zhang F. Angew. Chem., Int. Ed., 2021, 61: e202111627.

[118]

Hu H, Yan Q, Ge R, Gao Y. Chinese J. Catal., 2018, 39: 1167.

[119]

Yusran Y, Li H, Guan X, Fang Q, Qiu S. EnergyChem, 2020, 2: 100035.

[120]

Liu J, Wang N, Ma L. Chem. Asian J., 2020, 15: 338.

[121]

Zhi Y, Wang Z, Zhang H-L, Zhang Q. Small, 2020, 16: 2001070.

[122]

Yu K, Bi S, Ming W, Wei W, Zhang Y, Xu J, Qiang P, Qiu F, Wu D, Zhang F. Polym. Chem., 2019, 10: 3758.

[123]

Ming W, Bi S, Zhang Y, Yu K, Lu C, Fu X, Qiu F, Liu P, Su Y, Zhang F. Adv. Funct. Mater., 2019, 29: 1808423.

[124]

Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.

[125]

Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5: 2789.

[126]

Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

[127]

Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140: 1423.

[128]

Bi S, Lan Z A, Paasch S, Zhang W, He Y, Zhang C, Liu F, Wu D, Zhuang X, Brunner E, Wang X, Zhang F. Adv. Funct. Mater., 2017, 27: 1703146.

[129]

Jin E, Fu S, Hanayama H, Addicoat M A, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang K A I, Wang H I, Müllen K, Narita A. Angew. Chem., Int. Ed., 2021, 61: e202114059.

[130]

Zhai L, Yang S, Yang X, Ye W, Wang J, Chen W, Guo Y, Mi L, Wu Z, Soutis C, Xu Q, Jiang Z. Chem. Mater., 2020, 32: 9747.

[131]

Zhang F, Wei S, Wei W, Zou J, Gu G, Wu D, Bi S, Zhang F. Sci. Bull., 2020, 65: 1659.

[132]

Zhang G, Hong Y-L, Nishiyama Y, Bai S, Kitagawa S, Horike S. J. Am. Chem. Soc., 2019, 141: 1227.

[133]

Fujie K, Otsubo K, Ikeda R, Yamada T, Kitagawa H. Chem. Sci., 2015, 6: 4306.

[134]

Hu Y, Dunlap N, Wan S, Lu S, Huang S, Sellinger I, Ortiz M, Jin Y, Lee S-H, Zhang W. J. Am. Chem. Soc., 2019, 141: 7518.

[135]

Jeong K, Park S, Jung G Y, Kim S H, Lee Y-H, Kwak S K, Lee S-Y. J. Am. Chem. Soc., 2019, 141: 5880.

[136]

Xu Q, Tao S, Jiang Q, Jiang D. J. Am. Chem. Soc., 2018, 140: 7429.

[137]

Li Z, Liu Z-W, Mu Z-J, Cao C, Li Z, Wang T-X, Li Y, Ding X, Han B-H, Feng W. Mater. Chem. Front., 2020, 4: 1164.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/