Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution

Shujing Liu , Jia Guo

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 373 -381.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 373 -381. DOI: 10.1007/s40242-022-2007-z
Review

Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution

Author information +
History +
PDF

Abstract

Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.

Keywords

Covalent organic framework / Photocatalysis / Hydrogen evolution / Charge separation

Cite this article

Download citation ▾
Shujing Liu, Jia Guo. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution. Chemical Research in Chinese Universities, 2022, 38(2): 373-381 DOI:10.1007/s40242-022-2007-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tilford R W, Gemmill W R, Zur Loye H-C, Lavigne J J. Chem. Mater., 200, 18: 5296.

[2]

Guan Q, Wang G-B, Zhou L-L, Li W-Y, Dong Y-B. Nanoscale Adv., 2020, 2: 3656.

[3]

Rabbani M G, El-Kaderi H M. Chem. Mater., 2012, 24: 1511.

[4]

Islamoglu T, Rabbani M G, El-Kaderi H M. J. Mater. Chem. A., 2013, 1: 10259.

[5]

Cejka J, Wichterlova B. Catal. Rev., 2002, 44: 375.

[6]

Qu Y, Zhou W, Pan K, Tian C G, Ren Z Y, Dong Y Z, Fu H G. Phys. Chem. Chem. Phys., 2010, 12: 9205.

[7]

Feng X, Chen L, Honsho Y, Saengsawang O, Liu L L, Wang L, Saeki A, Irle S, Seki S, Dong Y P, Jiang D L. Adv. Mater., 2012, 24: 3026.

[8]

Wang R, Cai Q, Zhu Y, Mi Z, Weng W, Liu Y, Wan J, Hu J, Wang C, Yang D, Guo J. Chem. Mater., 2021, 33: 3566.

[9]

Wang R, Kong W F, Zhou T, Wang C C, Guo J. Chem. Comm., 2021, 57: 331.

[10]

Zhao Z, Chen W, Impeng S, Li M, Wang R, Liu Y, Zhang L, Dong L, Unruangsri J, Peng C, Wang C, Namuangruk S, Lee S-Y, Wang Y, Lu H, Guo J. J. Mater. Chem. A., 2020, 8: 3459.

[11]

Zhao Z, Wang R, Peng C, Chen W, Wu T, Hu B, Weng W, Yao Y, Zeng J, Chen Z, Liu P, Liu Y, Li G, Guo J, Lu H, Guo Z. Nat. Commun., 2021, 12: 6606.

[12]

Duan H, Li K, Xie M, Chen J-M, Zhou H-G, Wu X, Ning G-H, Cooper A I, Li D. J. Am. Chem. Soc., 2021, 143: 19446.

[13]

Mi Z, Yang P, Wang R, Unruangsri J, Yang W, Wang C, Guo J. J. Am. Chem. Soc., 2019, 141: 14433.

[14]

Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Angew. Chem. Int. Ed., 201, 55: 13979.

[15]

Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110: 6503.

[16]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[17]

Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38: 253.

[18]

Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.

[19]

Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Catal. Today., 201, 262: 170.

[20]

Zeng M, Li Y. J. Mater. Chem. A, 2015, 3: 14942.

[21]

Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5: 2789.

[22]

Zhou T, Huang X, Mi Z, Zhu Y, Wang R, Wang C, Guo J. Poly. Chem., 2021, 12: 3250.

[23]

Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Angew. Chem. Int. Ed., 2020, 59: 6007.

[24]

Biswal B P, Vignolo-González H A, Banerjee T, Grunenberg L, Savasci G, Gottschling K, Nuss J, Ochsenfeld C, Lotsch B V. J. Am. Chem. Soc., 2019, 141: 11082.

[25]

Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3: 400.

[26]

Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

[27]

Wang J, Zhang J, Peh S B, Liu G, Kundu T, Dong J, Ying Y, Qian Y, Zhao D. Sci. China Chem., 2020, 63: 192.

[28]

Chen W B, Wang L, Mo D Z, He F, Wen Z L, Wu X J, Xu H X, Chen L. Angew. Chem. Int. Ed., 2020, 59: 16902.

[29]

Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[30]

Bai L Y, Phua S Z F, Lim W Q, Jana A, Luo Z, Tham H P, Zhao L Z, Gao Q, Zhao Y L. Chem. Commun., 201, 52: 4128.

[31]

Halder A, Kandambeth S, Biswal B P, Kaur G, Roy N C, Addicoat M, Salunke J K, Banerjee S, Vanka K, Heine T, Verma S, Banerjee R. Angew. Chem. Int. Ed., 201, 55: 7806.

[32]

Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47: 8826.

[33]

Spitler E L, Koo B T, Novotney J L, Colson J W, Uribe-Romo F J, Gutierrez G D, Clancy P, Dichtel W R. J. Am. Chem. Soc., 2011, 133: 19416.

[34]

Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J. Am. Chem. Soc., 201, 138: 5797.

[35]

Wang K, Yang L M, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew. Chem. Int. Ed., 2017, 56: 14149.

[36]

Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57: 8438.

[37]

Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B. Angew. Chem. Int. Ed., 2018, 57: 11968.

[38]

Zhao Y, Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D. Angew. Chem. Int. Ed., 2013, 52: 3770.

[39]

Zhu Y, Wan S, Jin Y, Zhang W. J. Am. Chem. Soc., 2015, 137: 13772.

[40]

Li Z J, Ding S Y, Xue H D, Cao W, Wang W S. Chem. Commun., 201, 52: 7217.

[41]

Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

[42]

Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 201, 138: 15519.

[43]

Zhang Y, Shen X, Feng X, Xia H, Mu Y, Liu X. Chem. Commun., 201, 52: 11088.

[44]

El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316: 268.

[45]

Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47: 8826.

[46]

Jin E, Lan Z, Jiang Q, Geng K, Li G, Wang X, Jiang D. Chem., 2019, 5: 1632.

[47]

Yang J, Acharjya A, Ye M-Y, Rabeah J, Li S, Kochovski Z, Youk S, Roeser J, Grüneberg J, Penschke C, Schwarze M, Wang T, Lu Y, van de Krol R, Oschatz M, Schomäcker R, Saalfrank P, Thomas A. Angew. Chem. Int. Ed., 2021, 60: 19797.

[48]

Yang S., Lv H., Zhong H., Yuan D., Wang X., Wang R., Angew. Chem. Int. Ed., 2022, e202115655

[49]

Mo C, Yang M, Sun F, Jian J, Zhong L, Fang Z, Feng J, Yu D. Adv. Sci., 2020, 7: 1902988.

[50]

Wang Y, Hao W, Liu H, Chen R, Pan Q, Li Z, Zhao Y. Nat. Commun., 2022, 13: 100.

[51]

Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Nat. Commun., 2019, 10: 2467.

[52]

Xu J, Yang C, Bi S, Wang W, He Y F, Wu D, Liang Q, Wang X, Zhang F. Angew. Chem. Int. Ed., 2020, 59: 23845.

[53]

Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140: 1423.

[54]

Li W, Huang X, Zeng T, Liu Y A, Hu W, Yang H, Zhang Y-B, Wen K. Angew. Chem. Int. Ed., 2021, 60: 1869.

[55]

Cheng Y-J, Wang R, Wang S, Xi X-J, Ma L-F, Zang S-Q. Chem. Commun., 2018, 54: 13563.

[56]

Zhou T, Wang L, Huang X, Unruangsri J, Zhang H, Wang R, Song Q, Yang Q, Li W, Wang C, Takahashi K, Xu H, Guo J. Nat. Commun., 2021, 12: 3934.

[57]

Ghosh S, Nakada A, Springer M A, Kawaguchi T, Suzuki K, Kaji H, Baburin I, Kuc A, Heine T, Suzuki H, Abe R, Seki S. J. Am. Chem. Soc., 2020, 142: 9752.

[58]

Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang K A I, Guo J. Angew. Chem. Int. Ed., 2021, 60: 9642.

[59]

Gottschling K, Savasci G, Vignolo-Gonzalez H, Schmidt S, Mauker P, Banerjee T, Rovo P, Ochsenfeld C, Lotsch B V. J. Am. Chem. Soc., 2020, 142: 12146.

[60]

Thote J, Aiyappa H B, Deshpande A, Díaz D, Kurungot S, Banerjee R. Chem. Eur. J., 2014, 20: 15961.

[61]

Yao Y H, Li J, Zhang H, Tang H L, Fang L, Niu G D, Sun X J, Zhang F M. J. Mater. Chem. A, 2020, 8: 8949.

[62]

Wang H, Qian C, Liu J, Zeng Y F, Wang D D, Zhou W Q, Gu L, Wu H W, Liu G F, Zhao Y L. J. Am. Chem. Soc., 2020, 142: 4862.

[63]

Lin C C, Han C Z, Gong L, Chen X, Deng J X, Qi D D, Bian Y Z, Wang K, Jiang J Z. Catal. Sci. Technol., 2021, 11: 2616.

[64]

Li C C, Gao M Y, Sun X J, Tang H L, Dong H, Zhang F M. Appl. Catal. B, 2020, 266: 118586.

[65]

Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Angew. Chem. Int. Ed., 2018, 57: 12106.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/