Amphiphilic Block Copolymer Micelles for Gene Delivery

Qin Li , Bixin Jin , Yunjun Luo , Xiaoyu Li

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1368 -1379.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1368 -1379. DOI: 10.1007/s40242-022-2005-1
Review

Amphiphilic Block Copolymer Micelles for Gene Delivery

Author information +
History +
PDF

Abstract

Gene therapy is a promising method to treat acquired and inherited diseases by introducing exogenous genes into specific recipient cells. Polymeric micelles with different nanoscopic morphologies and properties hold great promise for gene delivery system. Conventional cationic polymers, poly(ethyleneimine)(PEI), poly(L-lysine)(PLL), poly(2-dimethylaminoethyl methacrylate)(PDMAEMA) and novel cationic polymers poly(2-oxazoline)s(POxs), have been incorporated into block copolymers and decorated with targeting moieties to enhance transfection efficiency. In order to minimize cytotoxicity, nonionic block copolymer micelles are utilized to load gene through hydrophilic and hydrophobic interactions or covalent conjugations, recently. From our perspective, properties(shape, size, and mechanical stiffness, etc.) of block copolymer micelles may significantly affect cytotoxicity, transfection efficiency, circulation time, and load capacity of gene vectors in vivo and in vitro. This review briefly sums up recent efforts in cationic and nonionic amphiphilic polymeric micelles for gene delivery.

Keywords

Polymeric micelle / Block copolymer / Gene delivery

Cite this article

Download citation ▾
Qin Li, Bixin Jin, Yunjun Luo, Xiaoyu Li. Amphiphilic Block Copolymer Micelles for Gene Delivery. Chemical Research in Chinese Universities, 2022, 38(6): 1368-1379 DOI:10.1007/s40242-022-2005-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pahle J, Walther W. Expert Opin. Biol. Th., 201, 16: 443.

[2]

Piotrowski-Daspit A S, Kauffman A C, Bracaglia L G, Saltzman W M. Adv. Drug Deliv. Rev., 2020, 156: 119.

[3]

Davis M E. Curr. Opin. Biotech., 2002, 13: 128.

[4]

Han S-O, Mahato R I, Sung Y K, Kim S W. Mol. Ther., 2000, 2: 302.

[5]

Huang Y, Hong J, Zheng S, Ding Y, Guo S, Zhang H, Zhang X, Du Q, Liang Z. Mol. Ther., 2011, 19: 381.

[6]

Green J J, Langer R, Anderson D G. Acc. Chem. Res., 2008, 41: 749.

[7]

Smith A E. Annu. Rev. Microbiol., 1995, 49: 807.

[8]

Park T G, Jeong J H, Kim S W. Adv. Drug Deliv. Rev., 200, 58: 467.

[9]

Li C, Li Q, Kaneti Y V, Hou D, Yamauchi Y, Mai Y. Chem. Soc. Rev., 2020, 49: 4681.

[10]

Tritschler U, Pearce S, Gwyther J, Whittell G R, Manners I. Macromo-lecules, 2017, 50: 3439.

[11]

Shin J J, Kim E J, Ku K H, Lee Y J, Hawker C J, Kim B J. ACS Macro Lett., 2020, 9: 306.

[12]

Cabral H, Miyata K, Osada K, Kataoka K. Chem. Rev., 2018, 118: 6844.

[13]

Liu X, Zhao K, Cao J, Qi X, Wu L, Shen S. Int. J. Pharmaceut., 2021, 608: 121052.

[14]

Maeda H. Adv. Drug Deliv. Rev., 2015, 91: 3.

[15]

Yu L, Yao L, Yang K, Fei W, Chen Q, Qin L, Liu S, Zou Z, Qin B. Polym. Sci. Ser. A, 2021, 63: 769.

[16]

Dutta D., Ke W., Xi L., Yin W., Zhou M., Ge Z., WIREs Nanomed Nano-biotechnol., 2020, 12, e1585

[17]

Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2: 249.

[18]

Fox M E, Szoka F C, Fréchet J M J. Acc. Chem. Res., 2009, 42: 1141.

[19]

Sato K, Ji W, Palmer L C, Weber B, Barz M, Stupp S I. J. Am. Chem. Soc., 2017, 139: 8995.

[20]

Wang W, Gaus K, Tilley R D, Gooding J J. Mater. Horiz., 2019, 6: 1538.

[21]

Elsabahy M, Wooley K L. Chem. Soc. Rev., 2012, 41: 2545.

[22]

Perrault S D, Walkey C, Jennings T, Fischer H C, Chan W C W. Nano Lett., 2009, 9: 1909.

[23]

Nomoto T, Fukushima S, Kumagai M, Machitani K, Arnida M Y, Oba M, Miyata K, Osada K, Nishiyama N, Kataoka K. Nat. Commun., 2014, 5: 3545.

[24]

Yi Y, Kim H J, Mi P, Zheng M, Takemoto H, Toh K, Kim B S, Hayashi K, Naito M, Matsumoto Y, Miyata K, Kataoka K. J. Control. Release, 201, 244: 247.

[25]

Takeda K M, Yamasaki Y, Dirisala A, Ikeda S, Tockary T A, Toh K, Osada K, Kataoka K. Biomaterials, 2017, 126: 31.

[26]

Dash T K, Konkimalla V B. J. Control. Release, 2012, 158: 15.

[27]

Gupta A P, Kumar V. Eur. Polym. J., 2007, 43: 4053.

[28]

Kumari A, Yadav S K, Yadav S C. Colloids Surf. B, 2010, 75: 1.

[29]

Zhao X, Li X, Zhao Y, Cheng Y, Yang Y, Fang Z, Xie Y, Liu Y, Chen Y, Ouyang Y, Yuan W. Front. Pharmacol., 2017, 8: 510.

[30]

Männistö M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urtti A. J. Control. Release, 2002, 83: 169.

[31]

Simanek E E, Mintzer M A. Chem. Rev., 2009, 109: 259.

[32]

Zhou Q., Xiang J., Hao L., Xu X., Zhou Z., Tang J., Ping Y., Shen Y., Nano Today, 2021, 39

[33]

Takeda K M, Osada K, Tockary T A, Dirisala A, Chen Q, Kataoka K. Biomacromolecules, 2017, 18: 36.

[34]

He Z, Miao L, Jordan R, S-Manickam D, Luxenhofer R, Kabanov A V. Macromol. Biosci., 2015, 15: 1004.

[35]

Sedlacek O, Monnery B D, Filippov S K, Hoogenboom R, Hruby M. Macromol. Rapid Commun., 2012, 33: 1648.

[36]

Osawa S, Osada K, Hiki S, Dirisala A, Ishii T, Kataoka K. Biomacro-molecules, 201, 17: 354.

[37]

Mastrobattista E, Hennink W E. Nat. Mater., 2011, 11: 10.

[38]

Klausen L H, Fuhs T, Dong M. Nat. Commun., 201, 7: 12447.

[39]

Hafner A M, Corthesy B, Textor M, Merkle H P. Int. J. Pharm., 201, 514: 176.

[40]

Danhier F, Ansorena E, Silva J M, Coco R, Le Breton A, Preat V. J. Control. Release, 2012, 161: 505.

[41]

Yang H W, Ye L, Guo X D, Yang C, Compans R W, Prausnitz M R. Adv. Healthc. Mater., 2017, 6: 1600750.

[42]

Zhang X, Wang Q, Qin L, Fu H, Fang Y, Han B, Duan Y. Drug Deliv., 201, 23: 2936.

[43]

Cai C, Xie Y, Wu L, Chen X, Liu H, Zhou Y, Zou H, Liu D, Zhao Y, Kong X, Liu P. Sci. Rep., 2017, 7: 46250.

[44]

Zhang J, Chen C, Fu H, Yu J, Sun Y, Huang H, Tang Y, Shen N, Duan Y. ACS Nano, 2020, 14: 4414.

[45]

Chen L. Q., Pagel M. D., Adv. Radiol., 2015, 2015

[46]

Sun W, Chen X, Xie C, Wang Y, Lin L, Zhu K, Shuai X. Biomacro-molecules, 2018, 19: 2248.

[47]

Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12: 991.

[48]

Kamaly N, Yameen B, Wu J, Farokhzad O C. Chem. Rev., 201, 116: 2602.

[49]

Sun B, Deng C, Meng F, Zhang J, Zhong Z. Acta Biomater., 201, 45: 223.

[50]

Zou Y, Meng F, Deng C, Zhong Z. J. Control. Release, 201, 239: 149.

[51]

Chen S, Rong L, Lei Q, Cao P X, Qin S Y, Zheng D W, Jia H Z, Zhu J, Cheng S X, Zhuo R X, Zhang X Z. Biomaterials, 201, 77: 149.

[52]

Deng J, Gao N, Wang Y, Yi H, Fang S, Ma Y, Cai L. Biomacromolecules, 2012, 13: 3795.

[53]

Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. J. Control. Release, 2013, 170: 259.

[54]

Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y. Biomaterials, 2015, 38: 50.

[55]

Garnett M C. Crit. Rev. Ther. Drug Carr. Syst., 1999, 16: 147.

[56]

Kichler A, Leborgne C, Coeytaux E, Danos O. J. Gene Med., 2001, 3: 135.

[57]

Boussif O, Lezoualc’h F, Zanta M A, Mergny M D, Scherman D, De-meneix B, Behr J P. Proc. Natl. Acad. Sci. USA, 1995, 92: 7297.

[58]

Li L, Wei Y, Gong C. J. Biomed. Nanotechnol., 2015, 11: 739.

[59]

Jaeger M, Schubert S, Ochrimenko S, Fischer D, Schubert U S. ChemInform., 2012, 41: 4755.

[60]

Lungwitz U, Breunig M, Blunk T, Gopferich A. Eur. J. Pharm. Biopharm., 2005, 60: 247.

[61]

Zhu J, Tang A, Law L P, Feng M, Ho K M, Lee D K L, Harris F W, Li P. Bioconjugate Chem., 2005, 16: 139.

[62]

Endres T K, Beck-Broichsitter M, Samsonova O, Renette T, Kissel T H. Biomaterials, 2011, 32: 7721.

[63]

Shi S, Zhu X, Guo Q, Wang Y, Zuo T, Luo F, Qian Z. Int. J. Nano-medicine, 2012, 7: 1749.

[64]

Shi S, Fan M, Wang X, Zhao C, Wang Y, Luo F, Zhao X, Qian Z. J. Phys. Chem. C, 2010, 114: 21315.

[65]

Zheng M, Librizzi D, Kiliç A, Liu Y, Renz H, Merkel O M, Kissel T. Biomaterials, 2012, 33: 6551.

[66]

Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X. Biomaterials, 2011, 32: 2222.

[67]

Zhou Z, Shen Y, Tang J, Jin E, Ma X, Sun Q, Zhang B, Van Kirk E A, Murdoch W J. J. Mater. Chem., 2011, 21: 19114.

[68]

Wang Q, Jiang H, Li Y, Chen W, Li H, Peng K, Zhang Z, Sun X. Biomaterials, 2017, 122: 10.

[69]

Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Int. J. Nanomedicine, 2018, 13: 2405.

[70]

Abebe D G, Kandil R, Kraus T, Elsayed M, Merkel O M, Fujiwara T. Macromol. Biosci., 2015, 15: 698.

[71]

Hoogenboom R, Thijs H M, Jochems M J, van Lankvelt B M, Fijten M W, Schubert U S. Chem. Commun., 2008 5758.

[72]

Kataoka K, Park J. Macromolecules, 2007, 40: 3599.

[73]

Lin P, Clash C, Pearce E M, Kwei T K, Aponte M A. J. Polym. Sci. Pt. B: Polym. Phys., 1988, 26: 603.

[74]

Mees M, Haladjova E, Momekova D, Momekov G, Shestakova P S, Tsvetanov C B, Hoogenboom R, Rangelov S. Biomacromolecules, 201, 17: 3580.

[75]

Kara A., Ozturk N., Esendagli G., Ozkose U. U., Gulyuz S., Yilmaz O., Telci D., Bozkir A., Vural I., Artif. Cell. Nanomed. Biotechnol., 2018, 46, S264

[76]

Du X J, Wang Z Y, Wang Y C. Biomater. Sci., 2018, 6: 2122.

[77]

Gaspar V M, Baril P, Costa E C, de Melo-Diogo D, Foucher F, Queiroz J A, Sousa F, Pichon C, Correia I J. J. Control. Release, 2015, 213: 175.

[78]

Wu P, Yin S, Liu T, Ding D, Wang K. Sci. China Mater., 2020, 64: 241.

[79]

Salazar M D, Ratnam M. Cancer Metastasis Rev., 2007, 26: 141.

[80]

Kim S H, Mok H, Jeong J H, Kim S W, Park T G. Bioconjugate Chem., 2005, 17: 241.

[81]

Kim S H, Jeong J H, Cho K C, Kim S W, Park T G. J. Control. Release, 2005, 104: 223.

[82]

Liu L, Zheng M, Renette T, Kissel T. Bioconjugate Chem., 2012, 23: 1211.

[83]

Liu L, Zheng M, Librizzi D, Renette T, Merkel O M, Kissel T. Mol. Pharm., 201, 13: 134.

[84]

Jones S K, Lizzio V, Merkel O M. Biomacromolecules, 201, 17: 76.

[85]

Wu Y, Zhang Y, Zhang W, Sun C, Wu J, Tang J. Colloid Surf. B- Biointerfaces, 201, 138: 60.

[86]

Wang H, Feng Y, Yang J, Guo J, Zhang W. J. Mater. Chem. B, 2015, 3: 3379.

[87]

Liu C, Xie Y, Li X, Yao X, Wang X, Wang M, Li Z, Cao F. Mol. Biotech-nol., 2021, 63: 63.

[88]

Jiang B, Yang J, Rahoui N, Taloub N, Huang Y D. Adv. Colloid Interface Sci., 2017, 250: 185.

[89]

Stanley E D, Mark H G, Edward F P. Trends Biochem. Sci., 1991, 16: 246.

[90]

Hennink W E, Cherng J, Wetering P, Talsma H, Crommelin D J A. Pharm. Res., 199, 13: 1038.

[91]

Long T E, Layman J M, Ramirez S M, Green M D. Biomacromolecules, 2009, 10: 1244.

[92]

Agarwal S, Zhang Y, Maji S, Greiner A. Materials Today, 2012, 15: 388.

[93]

van de Wetering P, Cherng J Y, Talsma H, Hennink W E. J. Control. Release, 1997, 49: 59.

[94]

Rungsardthong U, Deshpande M, Bailey L, Vamvakaki M, Armes S P, Garnett M C, Stolnik S. J. Control. Release, 2001, 73: 359.

[95]

Song M, Zeng L, Hong X, Meng Z, Yin J, Wang H, Liang Y, Jiang G. Environ. Sci. Technol., 2013, 47: 2886.

[96]

Song Y, Zhang T, Song X, Zhang L, Zhang C, Xing J, Liang X J. J. Mater. Chem. B, 2015, 3: 911.

[97]

Chrysostomou V, Pispas S. J. Polym. Sci. Pol. Chem., 2018, 56: 598.

[98]

Cordeiro R A, Santo D, Farinha D, Serra A, Faneca H, Coelho J F J. Acta Biomater., 2017, 47: 113.

[99]

Zhu C, Jung S, Luo S, Meng F, Zhu X, Park T G, Zhong Z. Biomaterials, 2010, 31: 2408.

[100]

Yue X, Qiao Y, Qiao N, Guo S, Xing J, Deng L, Xu J, Dong A. Biom-acromolecules, 2010, 11: 2306.

[101]

Diaz I L, Sierra C A, Jérôme V, Freitag R, Perez L D. J. Polym. Sci., 2020, 58: 2168.

[102]

Cheng Q, Du L, Meng L, Han S, Wei T, Wang X, Wu Y, Song X, Zhou J, Zheng S, Huang Y, Liang X J, Cao H, Dong A, Liang Z. ACS Appl. Mater. Interfaces, 201, 8: 4347.

[103]

Li H, Miteva M, Kirkbride K C, Cheng M J, Nelson C E, Simpson E M, Gupta M K, Duvall C L, Giorgio T D. Biomacromolecules, 2015, 16: 192.

[104]

Cheng Y, Sellers D L, Tan J Y, Peeler D J, Horner P J, Pun S H. Biomaterials, 2017, 127: 89.

[105]

Tan Z, Jiang Y, Zhang W, Karls L, Lodge T P, Reineke T M. J. Am. Chem. Soc., 2019, 141: 15804.

[106]

Tan Z, Jiang Y, Ganewatta M S, Kumar R, Keith A, Twaroski K, Pengo T, Tolar J, Lodge T P, Reineke T M. Macromolecules, 2019, 52: 8197.

[107]

Zhang Z, Shen W, Ling J, Yan Y, Hu J, Cheng Y. Nat. Commun., 2018, 9: 1377.

[108]

Wang M, Cheng Y. Biomaterials, 2014, 35: 6603.

[109]

Tan E, Lv J, Hu J, Shen W, Wang H, Cheng Y. J. Mater. Chem. B, 2018, 6: 7230.

[110]

Alabi C A, Love K T, Sahay G, Yin H, Luly K M, Langer R, Anderson D G. Proc. Natl. Acad. Sci. USA, 2013, 110: 12881.

[111]

Jayaraman M, Ansell S M, Mui B L, Tam Y K, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair J K, Rajeev K G, Hafez I M, Akinc A, Maier M A, Tracy M A, Cullis P R, Madden T D, Manoharan M, Hope M J. Angew. Chem. Int. Ed., 2012, 51: 8529.

[112]

Du L, Wang C, Meng L, Cheng Q, Zhou J, Wang X, Zhao D, Zhang J, Deng L, Liang Z, Dong A, Cao H. Biomaterials, 2018, 176: 84.

[113]

Zhou J, Wu Y, Wang C, Cheng Q, Han S, Wang X, Zhang J, Deng L, Zhao D, Du L, Cao H, Liang Z, Huang Y, Dong A. Nano Lett., 201, 16: 6916.

[114]

Wang C, Du L, Zhou J, Meng L, Cheng Q, Wang C, Wang X, Zhao D, Huang Y, Zheng S, Cao H, Zhang J, Deng L, Liang Z, Dong A. ACS Appl. Mater. Interfaces, 2017, 9: 32463.

[115]

Li C, Zhou J, Wu Y, Dong Y, Du L, Yang T, Wang Y, Guo S, Zhang M, Hussain A, Xiao H, Weng Y, Huang Y, Wang X, Liang Z, Cao H, Zhao Y, Liang X J, Dong A, Huang Y. Nano Lett., 2021, 21: 3680.

[116]

Zhu C, Zheng M, Meng F, Mickler F M, Ruthardt N, Zhu X, Zhong Z. Biomacromolecules, 2012, 13: 769.

[117]

Ritt N, Berger S, Wagner E, Zentel R. ACS Appl. Polym. Mater., 2020, 2: 5469.

[118]

Liu J, Jiang Z, Zhou J, Zhang S, Saltzman W M. J. Biomed. Mater. Res. A, 2011, 96: 456.

[119]

Zhou J, Liu J, Cheng C J, Patel T R, Weller C E, Piepmeier J M, Jiang Z, Saltzman W M. Nat. Mater., 2011, 11: 82.

[120]

Voevodina I, Scandola M, Zhang J, Jiang Z. RSC Adv., 2014, 4: 8953.

[121]

Yang Z, Jiang Z, Cao Z, Zhang C, Gao D, Luo X, Zhang X, Luo H, Jiang Q, Liu J. Nanoscale, 2014, 6: 10193.

[122]

Chen Y, Li Y, Gao J, Cao Z, Jiang Q, Liu J, Jiang Z. ACS Appl. Mater. Interfaces, 201, 8: 490.

[123]

Nazemi A, Boott C E, Lunn D J, Gwyther J, Hayward D W, Richardson R M, Winnik M A, Manners I. J. Am. Chem. Soc., 201, 138: 4484.

[124]

Chen J, Jiang W, Han H, Yang J, Chen W, Wang Y, Tang J, Li Q. ACS Macro Lett., 2017, 6: 523.

[125]

Shi C, Zhang Z, Shi J, Wang F, Luan Y. Int. J. Pharm., 2015, 495: 932.

[126]

Fuentes I, Blanco-Fernandez B, Alvarado N, Leiva A, Radic D, Alvarez-Lorenzo C, Concheiro A. Langmuir, 201, 32: 3331.

[127]

Chiappetta D A, Sosnik A. Eur. J. Pharm. Biopharm., 2007, 66: 303.

[128]

Alvarez-Lorenzo C, Sosnik A, Concheiro A. Curr. Drug Targets, 2011, 12: 1112.

[129]

Daima H K, Shankar S, Anderson A, Periasamy S, Bhargava S, Bansal V. Environ. Chem. Lett., 2018, 16: 1457.

[130]

Estabrook D A, Ennis A F, Day R A, Sletten E M. Chem. Sci., 2019, 10: 3994.

[131]

Day R A, Estabrook D A, Wu C, Chapman J O, Togle A J, Sletten E M. ACS Appl. Mater. Interfaces, 2020, 12: 38887.

[132]

Estabrook D A, Day R A, Sletten E M. Angew. Chem. Int. Ed., 2021, 60: 17362.

[133]

Chen S, Qin J, Du J. Macromolecules, 2020, 53: 3978.

[134]

Leonetti J P, Degols G, Milhaud P, Gagnor C, Lemaitre M, Lebleu B. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8: 825.

[135]

Herrmann T S A. Acc. Chem. Res., 2012, 45: 1419.

[136]

Zhang C, Hao L, Calabrese C M, Zhou Y, Choi C H, Xing H, Mirkin C A. Small, 2015, 11: 5360.

[137]

Wang D, Lin J, Jia F, Tan X, Wang Y, Sun X, Cao X, Che F, Lu H, Gao X, Shimkonis J C, Nyoni Z, Lu X, Zhang K. Sci. Adv., 2019, 5: eaav9322.

[138]

Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. An-gew. Chem. Int. Ed., 2012, 51: 10751.

[139]

Zhou Q, Wang Y, Xiang J, Piao Y, Zhou Z, Tang J, Liu X, Shen Y. Biomater. Sci., 2018, 6: 3178.

[140]

Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, Zheng M, Shi B. Adv. Mater., 2021, 33: 2104779.

[141]

Hinde E, Thammasiraphop K, Duong H T, Yeow J, Karagoz B, Boyer C, Gooding J J, Gaus K. Nat. Nanotechnol., 2017, 12: 81.

[142]

Kretzmann J A, Luther D C, Evans C W, Jeon T, Jerome W, Gopala-krishnan S, Lee Y W, Norret M, Iyer K S, Rotello V M. J. Am. Chem. Soc., 2021, 143: 4758.

[143]

Cheng D B, Wang D, Gao Y J, Wang L, Qiao Z Y, Wang H. J. Am. Chem. Soc., 2019, 141: 4406.

[144]

Kinnear C, Moore T L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Chem. Rev., 2017, 117: 11476.

[145]

Anselmo A C, Zhang M, Kumar S, Vogus D R, Menegatti S, Helgeson M E, Mitragotri S. ACS Nano, 2015, 9: 3169.

[146]

Li X, Gao Y, Boott C E, Winnik M A, Manners I. Nat. Commun., 2015, 6: 8127.

[147]

Li X, Gao Y, Boott C E, Hayward D W, Harniman R L, Whittell G R, Richardson R M, Winnik M A, Manners I. J. Am. Chem. Soc., 201, 138: 4087.

[148]

Li X, Gao Y, Harniman R, Winnik M A, Manners I. J. Am. Chem. Soc., 201, 138: 12902.

[149]

Boott C E, Gwyther J, Harniman R L, Hayward D W, Manners I. Nat. Chem., 2017, 9: 785.

[150]

He X, Hsiao M-S, Boott C E, Harniman R L, Nazemi A, Li X, Winnik M A, Manners I. Nat. Mater., 2017, 16: 481.

[151]

Chen G, Zhang G, Jin B, Luo M, Luo Y, Aya S, Li X. J. Am. Chem. Soc., 2019, 141: 15498.

[152]

Li X, Jin B, Gao Y, Hayward D W, Winnik M A, Luo Y, Manners I. Angew. Chem. Int. Ed., 201, 55: 11392.

[153]

Jin B, Sano K, Aya S, Ishida Y, Gianneschi N, Luo Y, Li X. Nat. Commun., 2019, 10: 2397.

[154]

Jin B, Liu G, Li X. Chinese J. Chem., 2020, 38: 1709.

[155]

Wang S, Jin B, Chen G, Luo Y, Li X. Polym. Chem., 2020, 11: 4706.

[156]

Luo M, Jin B, Luo Y, Li X. Macromolecules, 2021, 54: 6845.

[157]

Street S T G, He Y, Jin X H, Hodgson L, Verkade P, Manners I. Chem. Sci., 2020, 11: 8394.

[158]

Nowak M., Brown T. D., Graham A., Helgeson M. E., Mitragotri S., Bioeng. Transl. Med., 2020, 5, e10153

[159]

Yu Q, Roberts M G, Houdaihed L, Liu Y, Ho K, Walker G, Allen C, Reilly R M, Manners I, Winnik M A. Nanoscale, 2021, 13: 280.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/