Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks

Yin Zhang , Shengqian Ma

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 468 -471.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 468 -471. DOI: 10.1007/s40242-022-2002-4
Article

Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks

Author information +
History +
PDF

Abstract

Metal nanoparticles in porous supports are of great importance for catalysis, separation and sensing, but their controllable preparation is still largely unmet. Herein, we describe a simple laser-induced synthesis of ultrafine gold nanoparticles in the covalent organic framework. Gold nanoparticles are well embedded, and they are about (1±0.1) nm in size. This work is universal for the preparation of well-dispersed and ultrafine metal nanoparticles in porous supports.

Keywords

Metal nanoparticle / Covalent organic framework(COF) / Ultrafine / Photoreduction

Cite this article

Download citation ▾
Yin Zhang, Shengqian Ma. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks. Chemical Research in Chinese Universities, 2022, 38(2): 468-471 DOI:10.1007/s40242-022-2002-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo F, Yang H, Aguila B, Al-Enizi A, Nafady A, Singh M, Bansal V, Ma S. Catal. Sci. Technol., 2018, 8: 5244.

[2]

Sun Q, Chen M, Aguila B, Nguyen N, Ma S. Faraday Discuss, 2017, 201: 317.

[3]

Khorsandkheirabad A, Zhou X, Xie D, Wang H, Yuan J. Macromol. Rapid Comm., 2021, 42: 2000143.

[4]

Li Z, Qiao X, He G, Sun X, Feng D, Hu L, Xu H, Xu H, Ma S, Tian J. Nano Res., 2020, 13: 3377.

[5]

Wang Y, Wang L, Chen H, Hu X, Ma S. ACS Appl. Mater. Interfaces, 201, 8: 18173.

[6]

Lu G, Li S, Guo Z, Farha O, Hauser B, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene J, Zhang H, Zhang Q, Chen X, Ma J, Loo S, Wei W, Yang Y, Hupp J, Huo F. Nat. Chem., 2012, 4: 310.

[7]

Guo Z, Xiao C, Maligal-Ganesh R, Zhou L, Goh T, Lin X, Tesfagaber D, Thiel A, Huang W. ACS Catal., 2014, 4: 1340.

[8]

Kuo C, Tang Y, Chou L, Sneed B, Brodsky C, Zhao Z, Tsung C. J. Am. Chem. Soc., 2012, 134: 14345.

[9]

Zhang Z, Chen Y, Xu X, Zhang J, Xiang G, He W, Wang X. Angew. Chem. Int. Ed., 2013, 53: 429.

[10]

Zhao Y, Kornienko N, Liu Z, Zhu C, Asahina S, Kuo T, Bao W, Hexemer A, Terasaki O, Yang P, Yaghi O. J. Am. Chem. Soc., 2015, 137: 2199.

[11]

Hwang Y, Hong D, Chang J, Jhung S, Seo Y, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 120: 4212.

[12]

Aijaz A, Akita T, Tsumori N, Xu Q. J. Am. Chem. Soc., 2013, 135: 16356.

[13]

Aijaz A, Karkamkar A, Choi Y, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134: 13926.

[14]

Guo J, Duan Y, Liu Y, Li X, Zhang Y, Long C, Wang Z, Yang Y, Zhao S. J. Mater. Chem. A, 2022.

[15]

Yang Q, Xu Q, Jiang H. Chem. Soc. Rev., 2017, 46: 4774.

[16]

Li G, Zhao S, Zhang Y, Tang Z. Adv. Mater., 2018, 30: 1800702.

[17]

Shang L, Bian T, Zhang B, Zhang D, Wu L, Tung C, Yin Y, Zhang T. Angew. Chem. Int. Ed., 2014, 53: 250.

[18]

Joo S, Choi S, Oh L, Kwak J, Liu Z, Terasaki O, Ryoo R. Nature, 2001, 412: 169.

[19]

Nethravathi C, Anumol E, Rajamathi M, Ravishankar N. Nanoscale, 2011, 3: 569.

[20]

Wang W, An W, Ramalingam B, Mukherjee S, Niedzwiedzki D, Ganggopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134: 11276.

[21]

Farrusseng D, Tuel A. New J. Chem., 201, 40: 3933.

[22]

Gong W, Wu Q, Jiang G, Li G. J. Mater. Chem. A, 2019, 7: 13449.

[23]

Cui C, Tang Y, Ziaee M, Tian D, Wang R. ChemCatChem, 2018, 10: 1431.

[24]

Khatletskaya K, Reboul J, Meilikhov M, Nakahama M, Diring S, Tsujimoto M, Isoda S, Kim F, Kamei K, Fischer R, Kitagawa S, Furukawa S. J. Am. Chem. Soc., 2013, 135: 10998.

[25]

Cao H, Huang H, Chen Z, Karadeniz B, J, Cao R. ACS Appl. Mater. Interfaces, 2017, 9: 5231.

[26]

Sun N, Wang C, Wang H, Yang L, Jin P, Zhang W, Jiang J. Angew. Chem. Int. Ed., 2019, 58: 18011.

[27]

Yang X, Sun J, Kitta M, Pang H, Xu Q. Nat. Catal., 2018, 1: 214.

[28]

Ding S, Gao J, Wang Q, Zhang Y, Song W, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[29]

Song Y, Sun Q, Aguila B, Ma S. Adv. Sci., 2019, 6: 1801410.

[30]

Diercks C, Yaghi O. Science, 2017, 355: eaal1585.

[31]

Geng K, He T, Liu R, Dalapati S, Tan K, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev., 2020, 120: 8814.

[32]

Zhang C, Cui M, Ren J, Xing Y, Zhao H, Liu P, Ji X, Li M. Chem. Eng. J., 2020, 401: 126025.

[33]

Lan X, Du C, Cao L, She T, Li Y, Bai G. ACS Appl. Mater. Interfaces, 2018, 10: 38953.

[34]

Fan M, Wang W, Wang X, Zhu Y, Dong Z. Ind. Eng. Chem. Res., 2020, 59: 12677.

[35]

Jin P, Niu X, Gao Z, Xue X, Zhang F, Cheng W, Ren C, Du H, Manyande A, Chen H. ACS Appl. Nano Mater., 2021, 4: 5834.

[36]

Chen G, Li X, Zhao C, Ma H, Kan J, Xin Y, Chen C, Dong Y. Inorg. Chem., 2018, 57: 2678.

[37]

Wang N, Liu J, Tang L, Wei X, Wang C, Li X, Ma L. ACS Appl. Mater. Interfaces, 2021, 13: 24966.

[38]

Zhai L, Yang S, Yang X, Ye W, Wang J, Chen W, Guo Y, Mi L, Wu Z, Soutis C, Xu Q, Jiang Z. Chem. Mater., 2020, 32: 9747.

[39]

Lu S, Hu Y, Wan S, McCaffrey R, Jin Y, Gu H, Zhang W. J. Am. Chem. Soc., 2017, 139: 17082.

[40]

Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Angew. Chem. Int. Ed., 2020, 59: 6082.

[41]

Tao R, Shen X, Hu Y, Kang K, Zheng Y, Luo S, Yang S, Li W, Lu S, Jin Y, Qiu L, Zhang W. Small, 2020, 16: 1906005.

[42]

Xu C, Lin J, Yan D, Guo Z, Austin D, Zhan H, Kent A, Yue Y. ACS Appl. Nano Mater., 2020, 3: 6416.

[43]

Xu H, Gao J, Jiang D. Nat. Chem., 2015, 7: 905.

[44]

Sun Q, Aguila B, Perman J, Earl L, Abney C, Cheng Y, Wei H, Nguyen N, Wojtas L, Ma S. J. Am. Chem. Soc., 2017, 139: 2786.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/