Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D 2h and C 2 Building Blocks

Xuhan Zheng , Lin Zhang , Chenxiao Xie , Hui Wang , Hui Liu , Qingyan Pan , Yingjie Zhao

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 639 -642.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 639 -642. DOI: 10.1007/s40242-022-2001-5
Article

Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D 2h and C 2 Building Blocks

Author information +
History +
PDF

Abstract

The isomerization of covalent organic frameworks(COFs) materials is still a mysterious and attractive topic. Diversified monomer structures are still urgently needed to explore the in-depth mechanism of isomerization in these special COFs. This work provides a new D 2h monomer for the construction of [D 2h+C 2] 2D COFs isomers. A new D 2h monomer adopted here was proven to tend to form a single pore framework structure.

Keywords

Covalent organic framework / Isomerization / Kagome / Dynamic covalent bond

Cite this article

Download citation ▾
Xuhan Zheng, Lin Zhang, Chenxiao Xie, Hui Wang, Hui Liu, Qingyan Pan, Yingjie Zhao. Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D 2h and C 2 Building Blocks. Chemical Research in Chinese Universities, 2022, 38(2): 639-642 DOI:10.1007/s40242-022-2001-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 18: 310.

[2]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[3]

Liu H, Kan X N, Wu C Y, Pan Q Y, Li Z B, Zhao Y J. Chin. J. Polym. Sci., 2018, 36: 425.

[4]

Wu C Y, Liu Y M, Liu H, Duan C H, Pan Q Y, Zhu J, Hu F, Ma X Y, Jiu T G, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2018, 140: 10016.

[5]

Zhao Y J, Liu H, Wu C Y, Zhang Z H, Pan Q Y, Hu F, Wang R M, Li P W, Huang X W, Li Z B. Angew. Chem. Int. Ed., 2019, 58: 5376.

[6]

Liu H, Ding J H, Guan X Y, Chen F Q, Li C Y, Zhu L K, Xue M, Yuan D Q, Valtchev V, Yan Y S, Qiu S L, Fang Q R. J. Am. Chem. Soc., 2020, 142: 13334.

[7]

Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D. Nat. Commun., 2011, 2: 536.

[8]

Neti V S P K, Wu X, Deng S, Echegoyen L. Polym. Chem., 2013, 4: 4566.

[9]

Gao C, Li J, Yin S, Sun J L, Wang C. Nat. Commun., 2020, 11: 4919.

[10]

Liu Y M, Wu C Y, Sun Q Z, Hu F, Pan Q Y, Sun J, Jin Y H, Li Z B, Zhang W, Zhao Y J. CCS Chem., 2020, 2: 2418.

[11]

Wang Y C, Liu H, Pan Q Y, Ding N X, Yang C M, Zhang Z H, Jia C C, Li Z B, Liu J, Zhao Y J. ACS Appl. Mater. Interfaces, 2020, 12: 46483.

[12]

Ding S Y, Cao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[13]

Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. Angew. Chem. Int. Ed., 2014, 53: 2878.

[14]

Wang Y C, Liu H, Pan Q Y, Wu C Y, Hao W H, Xu J, Chen R Z, Liu J, Li Z B, Zhao Y J. J. Am. Chem. Soc., 2020, 142: 5958.

[15]

Chen R F, Wang Y, Ma Y, Arindam M, Gao X Y, Gao L, Qiao L J, Li X B, Wu L Z, Wang C. Nat. Commun., 2021, 12: 1354.

[16]

Zhi Y F, Wang Z R, Zhang H L, Zhang Q C. Small, 2020, 16: 2001070.

[17]

Li D H, Li C Y, Zhang L J, Li H, Zhu L K, Yang D J, Fang Q R, Qiu S L, Yao X D. J. Am. Chem. Soc., 2020, 142: 8104.

[18]

Li H, Pan Q Y, Ma Y C, Guan X Y, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. J. Am. Chem. Soc., 201, 138: 14783.

[19]

Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey S K, Liao L, Ambrogio M W, Botros Y Y, Duan X, Seki S, Stoddart J F, Yaghi O M. Chem. Mater., 2011, 23: 4094.

[20]

Liao H P, Ding H M, Li B J, Ai X P, Wang C. J. Mater. Chem. A, 2014, 2: 8854.

[21]

Yao C J, Wu Z, Xie J, Yu F, Guo W, Xu Z J, Li D S, Zhang S, Zhang Q. ChemSusChem, 2020, 13: 2457.

[22]

Li H, Chang J H, Li S S, Guan X Y, Li D H, Li C Y, Tang L X, Xue M, Yan Y S, Valtchev V, Qiu S L, Fang Q R. J. Am. Chem. Soc., 2019, 141: 13324.

[23]

Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. Chem. Eur. J., 2014, 20: 14614.

[24]

Li Z L, Li H, Guan X, Tang J J, Yusran Y, Li Z, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2017, 139: 17771.

[25]

Xie Z, Wang B, Yang Z F, Yang X, Yu X, Xing G L, Zhang Y H, Chen L. Angew. Chem. Int. Ed., 2019, 58: 15742.

[26]

She P F, Qin Y Y, Wang X, Zhang Q C. Adv. Mater., 2021 2101175.

[27]

Yu F, Liu W B, Ke S W, Kurmoo M, Zuo J L, Zhang Q C. Nat. Commun., 2020, 11: 5534.

[28]

Yu F, Liu W B, Li B, Tian D, Zuo J L, Zhang Q C. Angew. Chem. Int. Ed., 2019, 58: 16101.

[29]

Bai L Y, Phua S Z F, Lim W Q, Jana A, Luo Z, Tham H P, Zhao L Z, Gao Q, Zhao Y L. Chem. Commun., 201, 52: 4128.

[30]

Fang Q R, Wang J H, Gu S, Kaspar R B, Zhuang Z B, Zheng J, Guo H X, Qiu S L, Yan Y S. J. Am. Chem. Soc., 2015, 137: 8352.

[31]

Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 4570.

[32]

Meng Y, Luo Y, Shi J L, Ding H, Lang X, Chen W, Zheng A, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59: 3624.

[33]

Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120: 8814.

[34]

Ma D L, Qian C, Qi Q Y, Zhong Z R, Jiang G F, Zhao X. Nano Res., 2021, 14: 381.

[35]

Lin G Q, Ding H M, Chen R F, Peng Z K, Wang B S, Wang C. J. Am. Chem. Soc., 2017, 25: 8705.

[36]

Jiang S Y, Gan S X, Zhang X, Li H, Qi Q Y, Cui F Z, Lu J, Zhao X. J. Am. Chem. Soc., 2019, 141: 14981.

[37]

Han X H, Qi Q Y, Zhou Z B, Zhao X. Chin. J. Chem., 2020, 38: 1676.

[38]

Zhang Z H, Liu H, Sun Q Z, Shao F, Pan Q Y, Zhuang T, Zhao Y J. ChemistryOpen, 2020, 9: 381.

[39]

Makal T A, A. Yakovenko A, Zhou H C. J. Phys. Chem. Lett., 2011, 2: 1682.

[40]

Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136: 15885.

[41]

Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31: 146.

[42]

Mo Y P, Liu X H, Wang D. ACS Nano, 2017, 11: 11694.

[43]

Liang R R, Cui F Z, A R H, Qi Q Y, Zhao X. CCS Chem., 2020, 2: 139.

[44]

Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 30: 13162.

[45]

Liu X L, Li J, Gui B, Lin G Q, Fu Q, Yin S, Liu X F, Sun J L, Wang C. J. Am. Chem. Soc., 2021, 143: 2123.

[46]

Gao C, Li J, Yin S, Sun J L, Wang C. J. Am. Chem. Soc., 2020, 142: 3718.

[47]

Li Y S, Chen Q, Xu T T, Xie Z, Liu J J, Yu X, Ma S Q, Qin T S, Chen L. J. Am. Chem. Soc., 2019, 141: 13822.

[48]

Li Y, Guo L, Lv Y, Zhao Z, Ma Y, Chen W, Xing G, Jiang D, Chen L. Angew. Chem. Int. Ed., 2021, 60: 5363.

[49]

Troyano J, Carné-Sánchez A, Pérez-Carvajal J, León-Reina L, Imaz I, Cabeza A, Maspoch D. Angew. Chem. Int. Ed., 2018, 57: 15420.

[50]

Krause S, Bon V, Stoeck U, Senkovska I, Többens D M, Wallacher D, Kaskel S. Angew. Chem. Int. Ed., 2017, 56: 10676.

[51]

Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 201, 1: 16068.

[52]

Dong W L, Wang L, Ding H M, Zhao L, Wang D, Wang C, Wan L J. Langmuir, 2015, 31: 11755.

[53]

Pang Z F, Zhou T Y, Liang R R, Qian Q Y, Zhao X. Chem. Sci., 2017, 8: 3866.

[54]

Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R S, El-Kaderi H M. Chem. Eur. J., 2013, 19: 3324.

[55]

Krishnaraj C, Jena H S, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Speybroeck V V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142: 20107.

[56]

Lyle S J, Popp T M O, Waller P J, Pei X K, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2019, 141: 11253.

[57]

Dalapati S, Jin S B, Gao J, Xu Y H, Nagai A, Jiang D L. J. Am. Chem. Soc., 2013, 135: 17310.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/