Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications

Shuping Jia , Peng Zhao , Qi Liu , Yao Chen , Peng Cheng , Yi Yang , Zhenjie Zhang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 461 -467.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 461 -467. DOI: 10.1007/s40242-022-1514-2
Article

Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications

Author information +
History +
PDF

Abstract

Exploring new materials to manufacture proton-conducting membranes(PEMs) for fuel cells is highly significant. In this work, we fabricated two robust and highly crystalline porous covalent organic frameworks(COFs) via a stepwise synthesis strategy. The synthesized COF structures are integrated into high-density azo and amino groups, which allow to anchor acids for accelerating proton conduction. Moreover, the COFs exhibit good chemical stability and high hydrophilicity. These features make them potential platforms for proton conduction applications. Upon loaded with H3PO4, the COFs(H3PO4@COFs) deliver a high proton conductivity of 3.15×10−2 S/cm at 353 K under 95% relative humidity(RH). Furthermore, membrane electrode assemblies are fabricated using H 3 PO 4 @COF-26 as the solid electrolyte for a single fuel cell outputting a maximum power density of 18 mW/cm2.

Keywords

Covalent organic framework / Azo and amino group / Membrane / Proton conduction / Fuel cell

Cite this article

Download citation ▾
Shuping Jia, Peng Zhao, Qi Liu, Yao Chen, Peng Cheng, Yi Yang, Zhenjie Zhang. Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Chemical Research in Chinese Universities, 2022, 38(2): 461-467 DOI:10.1007/s40242-022-1514-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armaroli N, Balzani V. Angew. Chem. Int. Ed., 2007, 46: 52.

[2]

Zhao X, Pachfule P, Thomas A. Chem. Soc. Rev., 2021, 50: 6871.

[3]

Chu S, Cui Y, Liu N. Nat. Mater., 2017, 16: 16.

[4]

Fang W, Huang L, Zaman S, Wang Z, Han Y, Xia B. Chem. Res. Chinese Universities, 2020, 36(4): 611.

[5]

Zhu M, Wang J, Wu Y. Chem. Res. Chinese Universities, 2020, 36(3): 320.

[6]

Lubitz W, Tumas W. Chem. Rev., 2007, 107: 3900.

[7]

Haszeldine R S. Science, 2009, 325: 1647.

[8]

Yang F, Xu G, Dou Y, Wang B, Zhang H, Wu H, Zhou W, Li J, Chen B. Nat. Energy, 2017, 2: 877.

[9]

Huang X, Long C, Han J, Zhang J, Qiu X, Tang Z. Chem. Res. Chinese Universities, 2020, 36(1): 105.

[10]

Li B, Huang J, Wang X. Chem. Res. Chinese Universities, 2019, 35(1): 125.

[11]

Jacobson M Z, Colella W G. Science, 2005, 308: 1901.

[12]

Hickner M A, Ghassemi H, Kim Y S, Einsla B R, McGrath J E. Chem. Rev., 2004, 104: 4587.

[13]

Kraytsberg A, Ein-Eli Y. Energy Fuels, 2014, 28: 7303.

[14]

Fang J, Guo X, Harada S, Watari T, Tanaka K, Kita H, Okamoto K. Macromolecules, 2002, 35: 9022.

[15]

Adamski M, Skalski T J G, Britton B, Peckham T J, Metzler L, Holdcroft S. Angew. Chem. Int. Ed., 2017, 56: 9058.

[16]

Mader J A, Benicewicz B C. Macromolecules, 2010, 43: 6706.

[17]

Yang S, Ding X, Han B. Langmuir, 2018, 34: 7640.

[18]

Tang X, Ma N, Xu H, Zhang H, Zhang Q, Cai L, Otake K, Yin P, Kitagawa S, Horike S, Gu C. Mater. Horiz., 2021, 8: 3088.

[19]

Shimizu G K, Taylor J M, Kim S. Science, 2013, 341: 354.

[20]

Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2014, 136: 13166.

[21]

Joarder B, Lin J, Romero Z, Shimizu G K H. J. Am. Chem. Soc., 2017, 139: 7176.

[22]

Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2009, 131: 9906.

[23]

Mileo P G M, Adil K, Davis L, Cadiau A, Belmabkhout Y, Aggarwal H, Maurin G, Eddaoudi M, Devautour-Vinot S. J. Am. Chem. Soc., 2018, 140: 13156.

[24]

Trigg E B, Gaines T W, Maréchal M, Moed D E, Rannou P, Wagener K B, Stevens M J, Winey K I. Nat. Meter., 2018, 17: 725.

[25]

Meng X, Wang H, Song S, Zhang H. Chem. Soc. Rev., 2017, 46: 464.

[26]

Dybtsev D N, Ponomareva V G, Aliev S B, Chupakhin A P, Gallyamov M R, Moroz N K, Kolesov B A, Kovalenko K A, Shutova E S, Fedin V P. ACS Appl. Mater. Interfaces, 2014, 6: 5161.

[27]

Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K. Nat. Chem., 2009, 1: 705.

[28]

Diercks C S, Yaghi O M. Science, 2017, 355: 923.

[29]

Huang N, Wang P, Jiang D. Nat. Rev. Mater., 201, 1: 16068.

[30]

Liu X, Li J, Gui B, Lin G, Fu Q, Yin S, Liu X, Sun J, Wang C. J. Am. Chem. Soc., 2021, 143: 2123.

[31]

Su Y, Wan Y, Xu H, Otake K, Tang X, Huang L, Kitagawa S, Gu C. J. Am. Chem. Soc., 2020, 142: 13316.

[32]

Das S, Heasman P, Ben T, Qiu S. Chem. Rev., 2017, 117: 1515.

[33]

Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem., 2019, 11: 587.

[34]

Dey K, Pal M, Rout K, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2017, 139: 13083.

[35]

Liang R, A R, Xu S, Qi Q, Zhao X. J. Am. Chem. Soc., 2020, 142: 70.

[36]

Wang J C, Kan X, Shang J Y, Qiao H, Dong Y B. J. Am. Chem. Soc., 2020, 142: 16915.

[37]

Shao P, Li J, Chen F, Ma L, Li Q, Zhang M, Zhou J, Yin A, Feng X, Wang B. Angew. Chem. Int. Ed., 2018, 57: 16501.

[38]

Wang Y, Liu Y, Li H, Guan X, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc., 2020, 142: 3736.

[39]

Wang Z, Yu Q, Huang Y, An H, Zhao Y, Feng Y, Li X, Shi X, Liang J, Pan F, Cheng P, Chen Y, Ma S, Zhang Z. ACS Cent. Sci., 2019, 5: 1352.

[40]

Zhao X, Chen Y, Wang Z, Zhang Z. Polymer. Chem., 2021, 12: 4874.

[41]

Lu C, Mo Y, Hong Y, Chen T, Yang Z, Wan L, Wang D. J. Am. Chem. Soc., 2020, 142: 14350.

[42]

Wu X, Hong Y, Xu B, Nishiyama Y, Jiang W, Zhu J, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142: 14357.

[43]

Guo C, Liu M, Gao G, Tian X, Zhou J, Dong L, Li Q, Chen Y, Li S, Lan Y. Angew. Chem. Int. Ed., 2021, 60: 2.

[44]

Duan H, Li K, Xie M, Chen J, Zhou H, Wu X, Ning G, Cooper A I, Li D. J. Am. Chem. Soc., 2021, 143: 19446.

[45]

Bi S., Zhang Z., Meng F., Wu D., Chen J., Zhang F., Angew. Chem. Int. Ed., 2021, DOI: https://doi.org/10.1002/anie.202111627

[46]

Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Angew. Chem. Int. Ed., 2021, 60: 21838.

[47]

Liu L, Yin L, Cheng D, Zhao S, Zang H, Zhang N, Zhu G. Angew. Chem. Int. Ed., 2021, 60: 14875.

[48]

Yang Y, He X, Zhang P, Andaloussi Y H, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Angew. Chem. Int. Ed., 2020, 59: 3678.

[49]

Peng Y, Xu G, Hu Z, Cheng Y, Chi C, Yuan D, Cheng H, Zhao D. ACS Appl. Mater. Interfaces, 201, 8: 18505.

[50]

Ranjeesh K, Illathvalappil R, Veer S, Peter J, Wakchaure V, Goudappagouda, Raj V, Kurungot S, Babu S S. J. Am. Chem. Soc., 2019, 141: 14950.

[51]

Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136: 6570.

[52]

Ma H, Liu B, Li B, Zhang L, Li Y, Tan H, Zang H, Zhu G. J. Am. Chem. Soc., 201, 138: 5897.

[53]

Montoro C, Rodríguez-San-Miguel D, Polo E, Escudero-Cid R, Ruiz-Gonzalez M, Navarro J A R, Ocon P, Zamora F. J. Am. Chem. Soc., 2017, 139: 10079.

[54]

Xu H, Tao S, Jiang D. Nat. Mater., 201, 15: 722.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/