A Two-dimensional Covalent Organic Framework for Iodine Adsorption

Jianhui Zhang , Jianchuan Liu , Yaozu Liu , Yujie Wang , Qianrong Fang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 456 -460.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 456 -460. DOI: 10.1007/s40242-022-1513-3
Article

A Two-dimensional Covalent Organic Framework for Iodine Adsorption

Author information +
History +
PDF

Abstract

Radioactive iodine is a notorious pollutant in gas radioactive nuclear waste due to its radiation hazard, volatility, chemical toxicity, and high mobility. Therefore, developing a material with high efficiency-specific iodine capture is significant. Covalent organic framework(COF) has attracted significant attention as a new crystalline porous organic material. Due to its large specific surface and high chemical stability, it is an excellent alternative to adsorbents. Herein, we report a chemically stable two-dimensional COF(termed JUC-609) with specific adsorption of iodine. Adsorption experiments show that JUC-609 has an excellent iodine adsorption capacity as high as 5.9 g/g under 353 K and normal pressure condition, and iodine adsorption after multiple cycles is still maintained. Our study thus promotes the potential application of COFs in the field of environment-related applications.

Keywords

Porous material / Covalent organic framework / Iodine adsorption / Mesoporous structure

Cite this article

Download citation ▾
Jianhui Zhang, Jianchuan Liu, Yaozu Liu, Yujie Wang, Qianrong Fang, Shilun Qiu. A Two-dimensional Covalent Organic Framework for Iodine Adsorption. Chemical Research in Chinese Universities, 2022, 38(2): 456-460 DOI:10.1007/s40242-022-1513-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ewing R C, Hippel F N V. Science, 2009, 325: 151.

[2]

Veliscek-Carolan J. J. Hazard. Mater., 201, 318: 266.

[3]

Sava D F, Rodriguez M A, Chapman K W, Chupas P J, Greathouse J A, Crozier P S, Nenoff T M. J. Am. Chem. Soc., 2011, 133: 12398.

[4]

Shimamoto Y S, Takahashi Y, Terada Y. Environ. Sci. Technol., 2011, 45: 2086.

[5]

Subrahmanyam K S, Sarma D, Malliakas C D, Polychronopoulou K, Riley B J, Pierce D A, Chun J, Kanatzidis M G. Chem. Mater., 2015, 27: 2619.

[6]

Haefner D., Tranter T. J., Technical Report, 2007

[7]

Hasell T, Schmidtmann M, Cooper A I. J. Am. Chem. Soc., 2011, 133: 14920.

[8]

Xiao K, Liu H, Li Y, Yang G, Wang Y, Yao H. Chem. Eng. J., 2020, 382: 122997.

[9]

Sun H, Yang B, Li A. Chem. Eng. J., 2019, 372: 6.

[10]

Pham T, Docao S, Hwang I C, Song M K, Choi D Y, Moon D, Oleynikov P, Yoon K B. Energy & Environmental Science, 201, 9: 1050.

[11]

Bennett T D, Saines P J, Keen D A, Tan J C, Cheetham A K. Chem. Eur. J., 2013, 19: 7049.

[12]

Fu L, Luo R, Wang S, Zhang N, Chen C. Chem. J. Chinese Universities, 2019, 40(3): 419.

[13]

Zhong Y, Mao Y, Shi S, Wan M, Ma C, Wang S, Chen C, Zhao D, Zhang N. ACS Appl. Mater. Interfaces, 2019, 11: 32251.

[14]

Mao Y, Wang Q, Yu L, Qian H, Deng S, Xiao W, Zhao D, Chen C. Inorganic Chemistry, 2020, 59: 8213.

[15]

Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G. Angew. Chem. Int. Ed., 2015, 127: 12924.

[16]

Qian X, Zhu Z-Q, Sun H-X, Ren F, Mu P, Liang W, Chen L, Li A. ACS Appl. Mater. Interfaces, 201, 8: 21063.

[17]

Pei C, Ben T, Xu S, Qiu S. J. Mater. Chem. A, 2014, 2: 7179.

[18]

Sun H, La P, Zhu Z, Liang W, Yang B, Li A. J. Mater. Sci., 2015, 50: 7326.

[19]

Li H, Ding X, Han B H. Chem. Eur. J., 201, 22: 11863.

[20]

Cote A P, Benin A I, Ockwig N W, O’keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[21]

Ding X, Chen L, Honsho Y, Feng X, Saengsawang O, Guo J, Saeki A, Seki S, Irle S, Nagase S. J. Am. Chem. Soc., 2011, 133: 14510.

[22]

Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134: 19524.

[23]

Yusran Y, Guan X, Li H, Fang Q, Qiu S. National Science Review, 2020, 7: 170.

[24]

Wang Y, Liu Y, Li H, Guan X, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc., 2020, 142: 3736.

[25]

Cheng Y, Ying Y, Zhai L, Liu G, Dong J, Wang Y, Christopher M P, Long S, Wang Y, Zhao D. J. Membr. Sci., 2019, 573: 97.

[26]

Duan K, Wang J, Zhang Y, Liu J. J. Membr. Sci., 2019, 572: 588.

[27]

Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, SchomäCker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140: 1423.

[28]

Zeng Y, Zou R, Zhao Y. Adv. Mater., 201, 28: 2855.

[29]

Tian Y, Lu Q, Guo X, Wang S, Gao Y, Wang L. Nanoscale, 2020, 12: 7776.

[30]

Wang X-Y, Yin H-Q, Yin X-B. ACS Appl. Mater. Interfaces, 2020, 12: 20973.

[31]

Sun T, Xie J, Guo W, Li D S, Zhang Q. Adv. Energy Mater., 2020, 10: 1904199.

[32]

Wu M, Zhao Y, Sun B, Sun Z, Li C, Han Y, Xu L, Ge Z, Ren Y, Zhang M. Nano Energy, 2020, 70: 104498.

[33]

You Z, Zhang N, Guan Q, Xing Y, Bai F, Sun L. J. Inorg Organomet. Polym. Mater., 2020, 30: 1966.

[34]

Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. The Innovation, 2021, 2: 100076.

[35]

Li H, Pan Q, Ma Y, Guan X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. J. Am. Chem. Soc., 201, 138: 14783.

[36]

Yan S, Guan X, Li H, Li D, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc., 2019, 141: 2920.

[37]

Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. J. Am. Chem. Soc., 2017, 139: 8705.

[38]

Lu S, Hu Y, Wan S, Mccaffrey R, Jin Y, Gu H, Zhang W. J. Am. Chem. Soc., 2017, 139: 17082.

[39]

Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc., 2015, 137: 8352.

[40]

Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem., 2019, 11: 587.

[41]

Materials Studio Ver. 7.0, Accelrys Inc. Diego, Ca S.

[42]

Zhao C, Diercks C S, Zhu C, Hanikel N, Pei X, Yaghi O M. J. Am. Chem. Soc., 2018, 140: 16438.

[43]

Sick T, Rotter J M, Reuter S, Kandambeth S, Bach N N, DöBlinger M, Merz J, Clark T, Marder T B, Bein T. J. Am. Chem. Soc., 2019, 141: 12570.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/