Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst

Ziqi Zhang , Hanbo Wang , Yuxin Li , Minggang Xie , Chunguang Li , Haiyan Lu , Yu Peng , Zhan Shi

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 750 -757.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (3) : 750 -757. DOI: 10.1007/s40242-022-1504-4
Article

Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst

Author information +
History +
PDF

Abstract

Hydrogen is one of the most desirable alternatives to fossil fuels due to its renewability and large energy density. Electrochemical water splitting, as an environmental-friendly way to produce H2 of high-purity, is drawing more and more attention. Conductive nitrogen-doped carbon frameworks derived from metal-organic frameworks(MOFs) have been applied as promising electrocatalysts thanks to their superior conductivity, numerous active sites and hierarchical porous structures. However, traditional uncontrolled pyrolysis will lead to aggregation or fusion of the metal sites in MOFs or even cause collapse of the three-dimensional structures. Herein, we provide a confinement pyrolysis strategy to fabricate a CoCu bimetallic N-doped carbon framework derived from MOFs, which exhibits satisfactory catalytic performance with overpotentials of 199 mV towards hydrogen evolution reaction and 301 mV towards oxygen evolution reaction to reach 10 mA/cm2 in an alkaline solution. This work presents further inspirations for preserving the original skeleton of MOFs during high temperature pyrolysis in order to obtain more stable and efficient electrocatalyst.

Keywords

Metal-organic framework(MOF) derivative / Confined pyrolysis / Bimetallic catalyst / Water splitting / N-Doped carbon framework

Cite this article

Download citation ▾
Ziqi Zhang, Hanbo Wang, Yuxin Li, Minggang Xie, Chunguang Li, Haiyan Lu, Yu Peng, Zhan Shi. Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst. Chemical Research in Chinese Universities, 2022, 38(3): 750-757 DOI:10.1007/s40242-022-1504-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Obama B. Science, 2017, 355: 126.

[2]

Kamiya K. Chemical Science, 2020, 11: 8339.

[3]

Zhang Z, Cong L, Yu Z, Qu L, Huang W. Materials Today Energy, 2020, 16: 100387.

[4]

Jiang X, Chen J, Lyu F, Cheng C, Zhong Q, Wang X, Mahsud A, Zhang L, Zhang Q. Journal of Energy Chemistry, 2021, 59: 482.

[5]

Zhang J, Jia W, Dang S, Cao Y. Journal of Colloid and Interface Science, 2020, 560: 161.

[6]

McCrum I T, Koper M T M. Nature Energy, 2020, 5: 891.

[7]

Zhang X, Zhong X, Yang Z, Song J, Lu H. Chem. Res. Chinese Universities, 201, 32(6): 1016.

[8]

Nong H N, Falling L J, Bergmann A, Klingenhof M, Tran H P, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya B R, Schlögl R, Strasser P, Teschner D, Jones T E. Nature, 2020, 587: 408.

[9]

Lei C J, Zheng Q, Cheng F P, Hou Y, Yang B, Li Z J, Wen Z H, Lei L C, Chai G L, Feng X L. Advanced Functional Materials, 2020, 30: 2003000.

[10]

Sun R, Guo W, Han X, Hong X. Chem. Res. Chinese Universities, 2020, 36(4): 597.

[11]

Zhou K L, Wang Z, Han C B, Ke X, Wang C, Jin Y, Zhang Q, Liu J, Wang H, Yan H. Nature Communications, 2021, 12: 3783.

[12]

Shi Z, Wang Y, Li J, Wang X, Wang Y, Li Y, Xu W, Jiang Z, Liu C, Xing W, Ge J. Joule, 2021, 5: 2164.

[13]

Zhang Z, Wang T, Yao K, Cong L, Yu Z, Qu L, Qian M, Huang W. Inorganic Chemistry Communications, 2020, 116: 107914.

[14]

Shi Y, Dai W, Wang M, Xing Y, Xia X, Chen W. Chem. Res. Chinese Universities, 2020, 36(4): 709.

[15]

Ji X, Liu B, Ren X, Shi X, Asiri A M, Sun X. ACS Sustainable Chemistry & Engineering, 2018, 6: 4499.

[16]

Zhang Z, Yao K, Cong L, Yu Z, Qu L, Huang W. Catalysis Science & Technology, 2020, 10: 1336.

[17]

Dong W, Chen X, Peng J, Liu W, Jin X, Ni G, Liu Z. Chem. Res. Chinese Universities, 2020, 36(4): 648.

[18]

Zhou Y, AlZoubi T, Ma Y, Hsiao H-W, Zhang C, Sun C, Zuo J-M, Yang H. Nano Energy, 2021, 90: 106547.

[19]

Fang W, Huang L, Zaman S, Wang Z, Han Y, Xia B Y. Chem. Res. Chinese Universities, 2020, 36(4): 611.

[20]

Zhang L, Tang W, Dong C, Zhou D, Xing X, Dong W, Ding Y, Wang G, Wu M. Applied Catalysis B: Environmental, 2022, 302: 120833.

[21]

Wen J, Li Y, Gao J. Chem. Res. Chinese Universities, 2020, 36(4): 662.

[22]

Zhang X, Guo S, Qin Y, Li C. Chem. Res. Chinese Universities, 2021, 37(3): 379.

[23]

Xu J, Zhu J, Liu Y, Long Y, Feng J, Yang X, Zhang Y, Song S, Zhang H. Chemistry—A European Journal, 2020, 26: 12539.

[24]

Guo L, Sun J, Wei J, Liu Y, Hou L, Yuan C. Carbon Energy, 2020, 2: 203.

[25]

Wang X, Yu L, Guan B Y, Song S, Lou X W. Advanced Materials, 2018, 30: 1801211.

[26]

Lu X F, Yu L, Zhang J, Lou X W. Advanced Materials, 2019, 31: 1900699.

[27]

Wong H H, Sun M, Huang B. Chem. Res. Chinese Universities, 2021, 37(6): 1242.

[28]

Wang X, Song S, Zhang H. Chemical Society Reviews, 2020, 49: 736.

[29]

Wang W, Lv H, Du J, Chen A. Frontiers of Chemical Science and Engineering, 2021, 15: 1312.

[30]

Zhou D, Yi J, Zhao X, Yang J, Lu H, Fan L-Z. Chemical Engineering Journal, 2021, 413: 127508.

[31]

Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K. Nature Materials, 200, 5: 909.

[32]

Huang H, Liang C, Sha H, Yu Y, Lou Y, Chen C, Li C, Chen X, Shi Z, Feng S. Chem. Res. Chinese Universities, 2019, 35(1): 171.

[33]

Zhang X, Zhao H, Li C, Li S, Liu K, Wang L. Applied Catalysis B: Environmental, 2021, 299: 120641.

[34]

Cheng W, Wu Z-P, Luan D, Zang S-Q, Lou X W. Angewandte Chemie International Edition, 2021, 68(50): 26397.

[35]

Shang L, Yu H, Huang X, Bian T, Shi R, Zhao Y, Waterhouse G I N, Wu L-Z, Tung C-H, Zhang T. Advanced Materials, 201, 28: 1668.

[36]

Zhang Z, Wang T, Zhang S, Yao K, Sun Y, Liu Y, Wang X, Huang W. Applied Surface Science, 2021, 551: 149425.

[37]

Zhang Z, Zhang Y, Yao K, Huang W, Wang T. Inorganica Chimica Acta, 2021, 528: 120599.

[38]

Zhang Z, Cong L, Yu Z, Qu L, Qian M, Huang W. Materials Advances, 2020, 1: 54.

[39]

Duan J, Chen S, Zhao C. Nature Communications, 2017, 8: 15341.

[40]

Zhuang L, Jia Y, Liu H, Li Z, Li M, Zhang L, Wang X, Yang D, Zhu Z, Yao X. Angewandte Chemie International Edition, 2020, 59: 14664.

[41]

Kuang M, Wang Q, Han P, Zheng G. Advanced Energy Materials, 2017, 7: 1700193.

[42]

Yang M, Jiao L, Dong H, Zhou L, Teng C, Yan D, Ye T-N, Chen X, Liu Y, Jiang H-L. Science Bulletin, 2021, 66: 257.

[43]

Shang L, Bian T, Zhang B, Zhang D, Wu L-Z, Tung C-H, Yin Y, Zhang T. Angewandte Chemie International Edition, 2014, 53: 250.

[44]

Tabassum H, Zou R, Mahmood A, Liang Z, Wang Q, Zhang H, Gao S, Qu C, Guo W, Guo S. Advanced Materials, 2018, 30: 1705441.

[45]

Zhang J, Yu L, Lou X W D. Nano Research, 2017, 10: 4298.

[46]

Jiang Y, Zhang L, Zhang H, Zhang C, Liu S. Journal of Power Sources, 201, 329: 473.

[47]

Xu G, Xu G-C, Ban J-J, Zhang L, Lin H, Qi C-L, Sun Z-P, Jia D-Z. Journal of Colloid and Interface Science, 2018, 521: 141.

[48]

Du J, You S, Li X, Zhang Y, Yu Y, Li Q, Wang F, Ren N, Zou J. Journal of Power Sources, 2020, 478: 228707.

[49]

Zhang H, Yang Z, Wang X, Yan S, Zhou T, Zhang C, Telfer S G, Liu S. Nanoscale, 2019, 11: 17384.

[50]

Li X, You S, Du J, Dai Y, Chen H, Cai Z, Ren N, Zou J. Journal of Materials Chemistry A, 2019, 7: 25853.

[51]

Yu Y, You S, Du J, Xing Z, Dai Y, Chen H, Cai Z, Ren N, Zou J. Applied Catalysis B: Environmental, 2019, 259: 118043.

[52]

Hou C-C, Wang H-F, Li C, Xu Q. Energy & Environmental Science, 2020, 13: 1658.

[53]

Zhou P, Lv X, Xing D, Ma F, Liu Y, Wang Z, Wang P, Zheng Z, Dai Y, Huang B. Applied Catalysis B: Environmental, 2020, 263: 118330.

[54]

Mei J., He T., Bai J., Qi D., Du A., Liao T., Ayoko G. A., Yamauchi Y., Sun L., Sun Z., Advanced Materials, 2021, n/a, 2104638

[55]

Li L., Bu L., Huang B., Wang P., Shen C., Bai S., Chan T.-S., Shao Q., Hu Z., Huang X., Advanced Materials, 2021, n/a, 2105308

[56]

Guan Y, Feng Y, Wan J, Yang X, Fang L, Gu X, Liu R, Huang Z, Li J, Luo J, Li C, Wang Y. Small, 2018, 14: 1800697.

[57]

Xu H, Cao J, Shan C, Wang B, Xi P, Liu W, Tang Y. Angewandte Chemie International Edition, 2018, 57: 8654.

[58]

Dai L, Chen Z-N, Li L, Yin P, Liu Z, Zhang H. Advanced Materials, 2020, 32: 1906915.

[59]

Dong Q, Shuai C, Mo Z, Guo R, Liu N, Liu G, Wang J, Liu W, Chen Y, Liu J, Jiang Y, Gao Q. CrystEngComm, 2021, 23: 1172.

[60]

Zhang Q, Zhong H, Meng F, Bao D, Zhang X, Wei X. Nano Research, 2018, 11: 1294.

[61]

Li Y, Tan X, Hocking R K, Bo X, Ren H, Johannessen B, Smith S C, Zhao C. Nature Communications, 2020, 11: 2720.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/