Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2

Tianxiong Wang , Zhenjie Mu , Xuesong Ding , Baohang Han

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 446 -455.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 446 -455. DOI: 10.1007/s40242-022-1495-1
Article

Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2

Author information +
History +
PDF

Abstract

Currently, it encounters great challenges to accomplish catalyzing various kinds of carbon dioxide(CO2) conversion reactions efficiently with single catalyst, let alone control the interplay among catalytic efficiency and selectivity evenly. Here, we prepared a functional covalent organic framework, [PTPP] X%-TD-COF[PTPP=3-bromopropyltriphenylphosphonium; TD=1,3,5-tri(4-aminophenyl)benzene-1,4-diformylbenzene], by immobilizing the quaternary phosphonium salt onto the skeleton of COFs through a post-synthesis strategy for versatilely catalyzing reduction of CO2 and CO2 fixation on epoxide and aziridine facilely. With the typical features of COFs(such as porosity and ordered structure) and catalytic activity of the quaternary phosphonium salt, [PTPP] X%-TD-COF possesses an intensely synergistic effect for catalyzing the chemical transformations of CO2. Noteworthily, the quaternary phosphonium salt functionalized COFs catalyze the CO2 reduction reaction with amine and phenylsilane to produce formylated and methylated products under gentle reaction conditions with high selectivity and efficiency. Furthermore, [PTPP] X%-TD-COF shows high catalytic ability in CO2 chemical fixation reactions.

Keywords

Covalent organic framework / Quaternary phosphonium salt / Heterogeneous catalysis / Carbon dioxide / Chemical transformation

Cite this article

Download citation ▾
Tianxiong Wang, Zhenjie Mu, Xuesong Ding, Baohang Han. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2. Chemical Research in Chinese Universities, 2022, 38(2): 446-455 DOI:10.1007/s40242-022-1495-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lashof D A, Ahuja D R. Nature, 1990, 344: 529.

[2]

Matter J M, Stute M, Snæbjörnsdottir S Ó, Oelkers E H, Gislason S R, Aradottir E S, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E, Axelsson G, Alfredsson H A, Wolff-Boenisch D, Mesfin K, de la Reguera Taya D F, Hall J, Dideriksen K, Broecker W S. Science, 201, 352: 1312.

[3]

Kirchner B, Intemann B. Nat. Chem., 201, 8: 401.

[4]

Allen M R, Stocker T F. Nat, Clim. Change, 2014, 4: 23.

[5]

Keith D W. Science, 2009, 325: 1654.

[6]

Arneth A, Sitch S, Pongratz J, Stocker B D, Ciais P, Poulter B, Bayer A D, Bondeau A, Calle L, Chini L P, Gasser T, Fader M, Friedlingstein P, Kato E, Li W, Lindeskog M, Nabel J E M S, Pugh T A M, Robertson E, Viovy N, Yue C, Zaehle S. Nat. Geosci., 2017, 10: 79.

[7]

Sakakura T, Choi J-C, Yasuda H. Chem. Rev., 2007, 107: 2365.

[8]

Yu B, He L-N. ChemSusChem, 2015, 8: 52.

[9]

Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun., 2015, 6: 5933.

[10]

Yang Z-Z, He L-N, Gao J, Liu A-H, Yu B. Energ. Environ. Sci., 2012, 5: 6602.

[11]

Li K, Peng B, Peng T. ACS Catal., 201, 6: 7485.

[12]

Aresta M, Dibenedetto A, Angelini A. Chem. Rev., 2014, 114: 1709.

[13]

Wang W H, Himeda Y, Muckerman J T, Manbeck G F, Fujita E. Chem. Rev., 2015, 115: 12936.

[14]

Wang W, Wang S, Ma X, Gong J. Chem. Soc. Rev., 2011, 40: 3703.

[15]

Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. Science, 2010, 330: 1797.

[16]

Lim C H, Holder A M, Hynes J T, Musgrave C B. J. Phys. Chem. Lett., 2015, 6: 5078.

[17]

Fang C, Lu C, Liu M, Zhu Y, Fu Y, Lin B-L. ACS Catal., 201, 6: 7876.

[18]

Hao L, Zhao Y, Yu B, Yang Z, Zhang H, Han B, Gao X, Liu Z. ACS Catal., 2015, 5: 4989.

[19]

Li Y, Cui X, Dong K, Junge K, Beller M. ACS Catal., 2017, 7: 1077.

[20]

Lian Z, Nielsen D U, Lindhardt A T, Daasbjerg K, Skrydstrup T. Nat. Commun., 201, 7: 13782.

[21]

Zhou H, Wang G-X, Zhang W-Z, Lu X-B. ACS Catal., 2015, 5: 6773.

[22]

Wang W, Wang Y, Li C, Yan L, Jiang M, Ding Y. ACS Sustainable Chem. Eng., 2017, 5: 4523.

[23]

Li P, Cao Z. Organometallics, 2018, 37: 406.

[24]

Yang Z-Z, He L-N, Peng S-Y, Liu A-H. Green Chem., 2010, 12: 1850.

[25]

Watile R A, Bagal D B, Deshmukh K M, Dhake K P, Bhanage B M. J. Mol. Catal. A-Chem., 2011, 351: 196.

[26]

Jia J, Qian C, Dong Y, Li Y F, Wang H, Ghoussoub M, Butler K T, Walsh A, Ozin G A. Chem. Soc. Rev., 2017, 46: 4631.

[27]

Chong C C, Kinjo R. Angew. Chem. Int. Ed., 2015, 54: 12116.

[28]

Zhang Z, Fan F, Xing H, Yang Q, Bao Z, Ren Q. ACS Sustainable Chem. Eng., 2017, 5: 2841.

[29]

Liang J, Xie Y Q, Wu Q, Wang X Y, Liu T T, Li H F, Huang Y B, Cao R. Inorg. Chem., 2018, 57: 2584.

[30]

Zulfiqar S, Sarwar M I, Mecerreyes D. Polym. Chem., 2015, 6: 6435.

[31]

Bayne J M, Stephan D W. Chem. Soc. Rev., 201, 45: 765.

[32]

Hill C L, Prosser-McCartha C M. Coordin. Chem. Rev., 1995, 143: 407.

[33]

Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113: 5322.

[34]

Sun X-L, Tang Y. Accounts Chem. Res., 2008, 41: 937.

[35]

Li A-H, Dai L-X, Aggarwal V K. Chem. Rev., 1997, 97: 2341.

[36]

Matthews C N, Driscoll J S, Birum G H. Chem. Commun.(London), 1966 736.

[37]

Diercks C S, Liu Y, Cordova K E, Yaghi O M. Nat. Mater., 2018, 17: 301.

[38]

Hu K, Tang Y, Cui J, Gong Q, Hu C, Wang S, Dong K, Meng X, Sun Q, Xiao F-S. Chem. Commun., 2019, 55: 9180.

[39]

Wang J, Yang J G W, Yi G, Zhang Y. Chem. Commun., 2015, 51: 15708.

[40]

Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J. Am. Chem. Soc., 201, 138: 15790.

[41]

Xu H, Gao J, Jiang D. Nat. Chem., 2015, 7: 905.

[42]

Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. Angew. Chem., Int. Ed., 2014, 53: 2878.

[43]

Huang N, Wang P, Jiang D. Nat. Rev. Mater., 201, 1: 16068.

[44]

Dong B, Wang L, Zhao S, Rile G, Song X, Wang Y, Gao Y. Chem. Commun., 201, 52: 7082.

[45]

Huang N, Krishna R, Jiang D. J. Am. Chem. Soc., 2015, 137: 7079.

[46]

Li Q, Li Z. Polym. Chem., 2015, 6: 6770.

[47]

Diercks C S, Yaghi O M. Science, 2017, 355: eaal1585.

[48]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[49]

Mu Z-J, Ding X, Chen Z-Y, Han B-H. ACS Appl. Mater. Interfaces, 2018, 10: 41350.

[50]

Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015, 6: 6786.

[51]

Liu X-F, Ma R, Qiao C, Cao H, He L-N. Chem.-Eur. J., 201, 22: 16489.

[52]

Liu X-F, Li X-Y, Qiao C, Fu H-C, He L-N. Angew. Chem., Int. Ed., 2017, 56: 7425.

[53]

Nguyen T V, Yoo W J, Kobayashi S. Angew. Chem., Int. Ed., 2015, 54: 9209.

[54]

Qiu J, Zhao Y, Li Z, Wang H, Shi Y, Wang J. ChemSusChem, 2019, 12: 2421.

[55]

Cao Q, Zhang L-L, Zhou C, He J-H, Marcomini A, Lu J-M. Appl. Catal., B, 2021, 294: 120238.

[56]

Lv H, Wang W, Li F. Chem.-Eur. J., 2018, 24: 16588.

[57]

Luo R, Chen Y, He Q, Lin X, Xu Q, He X, Zhang W, Zhou X, Ji H. ChemSusChem, 2017, 10: 1526.

[58]

Revunova K, Nikonov G I. Chem.-Eur. J., 2014, 20: 839.

[59]

Xie W, Zhao M, Cui C. Organometallics, 2013, 32: 7440.

[60]

Hounjet L J, Caputo C B, Stephan D W. Angew. Chem., Int. Ed., 2012, 51: 4714.

[61]

Stephan D W, Erker G. Angew. Chem. Int. Ed., 2010, 49: 46.

[62]

Sajid M, Kehr G, Wiegand T, Eckert H, Schwickert C, Pöttgen R, Cardenas A J P, Warren T H, Fröhlich R, Daniliuc C G, Erker G. J. Am. Chem. Soc., 2013, 135: 8882.

[63]

Song Q-W, Zhou Z-H, He L-N. Green Chem., 2017, 19: 3707.

[64]

Leitner W. Coordin. Chem. Rev., 199, 153: 257.

[65]

Liu X-F, Qiao C, Li X-Y, He L-N. Green Chem., 2017, 19: 1726.

[66]

Steinbauer J, Longwitz L, Frank M, Epping J, Kragl U, Werner T. Green Chem., 2017, 19: 4435.

[67]

Chen J-X, Jin B, Dai W-L, Deng S-L, Cao L-R, Cao Z-J, Luo S-L, Luo X-B, Tu X-M, Au C-T. Appl. Catal. A, 2014, 484: 26.

[68]

Liu S, Suematsu N, Maruoka K, Shirakawa S. Green Chem., 201, 18: 4611.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/