Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration

Huimin Ding , Arindam Mal , Cheng Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 356 -363.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 356 -363. DOI: 10.1007/s40242-022-1494-2
Review

Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration

Author information +
History +
PDF

Abstract

Covalent organic frameworks(COFs) have received profound attention in recent years owing to their tailor-made porosity, large surface area and robust stability. More specifically, 2D COFs with redox-active and π electron-rich units allow efficient charge carriers hopping and ion migration, thus offering great potentials in energy storage. Herein, we present a systematic and concise overview of the recent advances in 2D COFs related to the electrochemical energy field, including supercapacitors, fuel cells, rechargeable lithium batteries, lithium-sulfur batteries, and other metal-ion batteries. In addition, a brief outlook is proposed on the challenges and prospects of COFs as electrode materials for energy storage.

Keywords

Covalent organic framework / Battery / Capacitor / Electrochemical energy storage / Electrode

Cite this article

Download citation ▾
Huimin Ding, Arindam Mal, Cheng Wang. Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. Chemical Research in Chinese Universities, 2022, 38(2): 356-363 DOI:10.1007/s40242-022-1494-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[2]

El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Côte A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316: 268.

[3]

Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41: 6010.

[4]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[5]

Gui B, Lin G, Ding H, Gao C, Mal A, Wang C. Acc. Chem. Res., 2020, 53: 2225.

[6]

Zeng Y, Zou R, Zhao Y. Adv. Mater., 201, 28: 2855.

[7]

Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J. J. Am. Chem. Soc., 2018, 140: 10094.

[8]

Ying Y, Tong M, Ning S, Ravi S K, Peh S B, Tan S C, Pennycook S J, Zhao D. J. Am. Chem. Soc., 2020, 142: 4472.

[9]

Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[10]

Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc., 201, 138: 12332.

[11]

Yan S, Guan X, Li H, Li D, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc., 2019, 141: 2920.

[12]

Meng Y, Luo Y, Shi J L, Ding H, Lang X, Chen W, Zheng A, Sun J, Wang C. Angew. Chem. Int. Ed., 2020, 59: 3624.

[13]

Chen R, Wang Y, Ma Y, Mal A, Gao X Y, Gao L, Qiao L, Li X B, Wu L Z, Wang C. Nat. Commun., 2021, 12: 1354.

[14]

Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 201, 138: 3031.

[15]

Lin G, Ding H, Yuan D, Wang B, Wang C. J. Am. Chem. Soc., 201, 138: 3302.

[16]

Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Chem. Soc. Rev., 2019, 48: 5266.

[17]

Haug W K, Moscarello E M, Wolfson E R, McGrier P L. Chem. Soc. Rev., 2020, 49: 839.

[18]

Dogru M, Bein T. Chem. Commun., 2014, 50: 5531.

[19]

Medina D D, Sick T, Bein T. Adv. Energy Mater., 2017, 7: 1700387.

[20]

Ding H, Li J, Xie G, Lin G, Chen R, Peng Z, Yang C, Wang B, Sun J, Wang C. Nat. Commun., 2018, 9: 5234.

[21]

Ranjeesh K C, Illathvalappil R, Veer S D, Peter J, Wakchaure V C, Goudappagouda Raj K V, Kurungot S, Babu S S. J Am. Chem. Soc., 2019, 141: 14950.

[22]

Meng Z, Aykanat A, Mirica K A. Chem. Mater., 2019, 31: 819.

[23]

Wu X, Hong Y L, Xu B, Nishiyama Y, Jiang W, Zhu J, Zhang G, Kita-gawa S, Horike S. J. Am. Chem. Soc., 2020, 142: 14357.

[24]

Yang Y, He X, Zhang P, Andaloussi Y H, Zhang H, Jiang Z, Chen Y, Ma S, Cheng P, Zhang Z. Angew. Chem. Int. Ed., 2020, 59: 3678.

[25]

Peng Z, Ding H, Chen R, Gao C, Wang C. Acta Chim. Sinica, 2019, 77: 205.

[26]

Chen X, Sun W, Wang Y. ChemElectroChem, 2020, 7: 3905.

[27]

Sun T, Xie J, Guo W, Li D S, Zhang Q. Adv. Energy Mater., 2020, 10: 1904199.

[28]

Zhu D, Xu G, Barnes M, Li Y, Tseng C P, Zhang Z, Zhang J J, Zhu Y, Khalil S, Rahman M M, Verduzco R, Ajayan P M. Adv. Funct. Mater., 2021, 31: 2100505.

[29]

Zhao X, Pachfule P, Thomas A. Chem. Soc. Rev., 2021, 50: 6871.

[30]

Iqbal R, Yasin G, Hamza M, Ibraheem S, Ullah B, Saleem A, Ali S, Hussain S, Nguyen T A, Slimani Y, Pathak R. Coord. Chem. Rev., 2021, 447: 214152.

[31]

Kandambeth S., Kale V. S., Shekhah O., Alshareef H. N., Eddaoudi M., Adv. Energy Mater., 2021, 2100177

[32]

Xu F, Xu H, Chen X, Wu D, Wu Y, Liu H, Gu C, Fu R, Jiang D. Angew. Chem. Int. Ed., 2015, 54: 6814.

[33]

Khattak A M, Ghazi Z A, Liang B, Khan N A, Iqbal A, Li L, Tang Z. J. Mater. Chem. A, 201, 4: 16312.

[34]

Yang Z, Liu J, Li Y, Zhang G, Xing G, Chen L. Angew. Chem. Int. Ed., 2021, 60: 20754.

[35]

Sajjad M, Lu W. J. Energy Storage, 2021, 39: 102618.

[36]

Li M, Liu J, Zhang T, Song X, Chen W, Chen L. Small, 2021, 17: 2005073.

[37]

DeBlase C R, Silberstein K E, Truong T T, Abruna H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135: 16821.

[38]

DeBlase C R, Hernandez-Burgos K, Silberstein K E, Rodríguez-Calero G G, Bisbey R P, Abruña H D, Dichtel W R. ACS Nano, 2015, 9: 3178.

[39]

Mulzer C R, Shen L, Bisbey R P, McKone J R, Zhang N, Abruña H D, Dichtel W R. ACS Cent. Sci., 201, 2: 667.

[40]

Xu J, He Y, Bi S, Wang M, Yang P, Wu D, Wang J, Zhang F. Angew. Chem. Int. Ed., 2019, 58: 12065.

[41]

Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z. Angew. Chem. Int. Ed., 2021, 60: 21838.

[42]

Guo Z C, Shi Z Q, Wang X Y, Li Z F, Li G. Coord. Chem. Rev., 2020, 422: 213465.

[43]

Sahoo R, Mondal S, Pal S C, Mukherjee D, Das M C. Adv. Energy Mater., 2021, 11: 2102300.

[44]

Xu H, Tao S, Jiang D. Nat. Mater., 201, 15: 722.

[45]

Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 201, 138: 5897.

[46]

Sasmal H S, Aiyappa H B, Bhange S N, Karak S, Halder A, Kurungot S, Banerjee R. Angew. Chem. Int. Ed., 2018, 57: 10894.

[47]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4: 3243.

[48]

Xu D, Liang M, Qi S, Sun W, Lv L P, Du F H, Wang B, Chen S, Wang Y, Yu Y. ACS Nano, 2021, 15: 47.

[49]

Zhou T, Zhao Y, Choi J W, Coskun A. Angew. Chem. Int. Ed., 2019, 58: 16795.

[50]

Wang G, Chandrasekhar N, Biswal B P, Becker D, Paasch S, Brunner E, Addicoat M, Yu M, Berger R, Feng X. Adv. Mater., 2019, 31: 1901478.

[51]

Chen D, Huang S, Zhong L, Wang S, Xiao M, Han D, Meng Y. Adv. Funct. Mater., 2020, 30: 1907717.

[52]

Hu Y, Wayment L J, Haslam C, Yang X, Lee S H, Jin Y, Zhang W. EnergyChem, 2021, 3: 100048.

[53]

Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.

[54]

Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. Angew. Chem. Int. Ed., 2018, 57: 9443.

[55]

Chen H, Tu H, Hu C, Liu Y, Dong D, Sun Y, Dai Y, Wang S, Qian H, Lin Z, Chen L. J. Am. Chem. Soc., 2018, 140: 896.

[56]

Haldar S, Roy K, Nandi S, Chakraborty D, Puthusseri D, Gawli Y, Ogale S, Vaidhyanathan R. Adv. Energy Mater., 2018, 8: 1702170.

[57]

Chen X D, Li Y S, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31: 1901640.

[58]

Sun T, Wang C, Xu Y. Chem. Res. Chinese Universities, 2020, 36(4): 640.

[59]

Han Z, Ai Y, Jiang X, You Y, Wei F, Luo H, Cui J, Bao Q, Fu J, He Q, Liu S. Chem. Eur. J., 2020, 26: 10433.

[60]

Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139: 4258.

[61]

Wei C, Tan L, Zhang Y, Zhang K, Xi B, Xiong S, Feng J, Qian Y. ACS Nano, 2021, 15: 12741.

[62]

Lei Z, Yang Q, Xu Y, Guo S, Sun W, Liu H, Lv L P, Zhang Y, Wang Y. Nat. Commun., 2018, 9: 576.

[63]

Zhang G, Hong Y, Nishiyama Y, Bai S, Kitagawa S, Horike S. J. Am. Chem. Soc., 2019, 141: 1227.

[64]

Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Adv. Energy Mater., 2015, 5: 1500212.

[65]

Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. Nanoscale, 201, 8: 16541.

[66]

Guo B, Ben T, Bi Z, Veith G M, Sun X G, Qiu S, Dai S. Chem. Commun., 2013, 49: 4905.

[67]

Talapaneni S N, Hwang T H, Je S H, Buyukcakir O, Choi J W, Coskun A. Angew. Chem. Int. Ed., 201, 55: 3106.

[68]

Ghazi Z A, Zhu L, Wang H, Naeem A, Khattak A M, Liang B, Khan N A, Wei Z, Li L, Tang Z. Adv. Energy Mater., 201, 6: 1601250.

[69]

Jiang Q, Li Y, Zhao X, Xiong P, Yu X, Xu Y, Chen L. J. Mater. Chem. A, 2018, 6: 17977.

[70]

Wang D G, Li N, Hu Y, Wan S, Song M, Yu G, Jin Y, Wei W, Han K, Kuang G C, Zhang W. ACS Appl. Mater. Interfaces, 2018, 10: 42233.

[71]

Shin H, Kim D, Kim H J, Kim J, Char K, Yavuz C T, Choi J W. Chem. Mater., 2019, 31: 7910.

[72]

Wang J, Qin W, Zhu X, Teng Y. Energy, 2020, 199: 117372.

[73]

Liao H, Ding H, Li B, Ai X, Wang C. J. Mater. Chem. A, 2014, 2: 8854.

[74]

Liao H, Wang H, Ding H, Meng X, Xu H, Wang B, Ai X, Wang C. J. Mater. Chem. A, 201, 4: 7416.

[75]

Meng Y, Lin G, Ding H, Liao H, Wang C. J. Mater. Chem. A, 2018, 6: 17186.

[76]

Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. ACS Appl. Mater. Interfaces, 2017, 9: 37731.

[77]

Ye H, Li Y. Energy Fuels, 2021, 35(9): 7624.

[78]

Qin K, Huang J, Holguin K, Luo C. Energy Environ. Sci., 2020, 13: 3950.

[79]

Kim M S, Lee W J, Paek S M, Park J K. ACS Appl. Mater. Interfaces, 2018, 10: 32102.

[80]

Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. Adv. Mater., 2018, 30: 1705401.

[81]

Patra B C, Das S K, Ghosh A, Raj K A, Moitra P, Addicoat M, Mitra S, Bhaumik A, Bhattacharya S, Pradhan A. J. Mater. Chem. A, 2018, 6: 16655.

[82]

Hu M M, Huang H, Gao Q, Tang Y, Luo Y, Deng Y, Zhang L. Energy Fuels, 2021, 35: 1851.

[83]

Shi R, Liu L, Lu Y, Wang C, Li Y, Li L, Yan Z, Chen J. Nat. Commun., 2020, 11: 178.

[84]

Gu S, Wu S, Cao L, Li M, Qin N, Zhu J, Wang Z, Li Y, Li Z, Chen J, Lu Z. J. Am. Chem. Soc., 2019, 141: 9623.

[85]

Li S Y, Li W H, Wu X L, Tian Y, Yue J, Zhu G. Chem. Sci., 2019, 10: 7695.

[86]

Zhang H, Sun W, Chen X, Wang Y. ACS Nano, 2019, 13: 14252.

[87]

Chen X, Zhang H, Ci C, Sun W, Wang Y. ACS Nano, 2019, 13: 3600.

[88]

Park J H, Kwak M J, Hwang C, Kang K N, Liu N, Jang J H, Grzy-bowski B A. Adv. Mater., 2021, 33: 2101726.

[89]

Khayum A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10: 8889.

[90]

Wang W, Kale V S, Cao Z, Kandambeth S, Zhang W, Ming J, Parvat-kar P T, Abou-Hamad E, Shekhah O, Cavallo L, Eddaoudi M. ACS Energy Lett., 2020, 5: 2256.

[91]

Sun R, Hou S, Luo C, Ji X, Wang L, Mai L, Wang C. Nano Lett., 2020, 20: 3880.

[92]

Lu H, Ning F, Jin R, Teng C, Wang Y, Xi K, Zhou D, Xue G. ChemSus-Chem, 2020, 13: 3447.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/