Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art

Lu Wang , Dong Wang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 265 -274.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 265 -274. DOI: 10.1007/s40242-022-1489-z
Review

Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art

Author information +
History +
PDF

Abstract

Covalent organic frameworks(COFs) featuring designable nanoporous structures exhibit many fascinating properties and have attracted great attention in recent years for their intriguing application potential in sensing, catalysis, gas storage and separation, optoelectronics, etc. Rational design of two-dimensional(2D) COFs through judiciously selecting chemical building blocks is critical to acquiring predetermined skeleton and pore structures. In this perspective, we review the reticular synthesis of 2D COFs with different topologies, highlighting the important role of various characterization techniques in crystal structure determination. 2D COFs with simple tessellations have been widely investigated, while the synthesis of complex tessellated COFs is still a great challenge. Some recent examples of 2D COFs with novel topological structures are also surveyed.

Keywords

Reticular design / Covalent organic framework / Topology / Characterization technique

Cite this article

Download citation ▾
Lu Wang, Dong Wang. Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art. Chemical Research in Chinese Universities, 2022, 38(2): 265-274 DOI:10.1007/s40242-022-1489-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ueda K, Dotera T, Gemma T. Phys. Rev. B, 2007, 75: 195122.

[2]

Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[3]

Han X, Zhang J, Huang J, Wu X, Yuan D, Liu Y, Cui Y. Nat. Commun., 2018, 9: 1294.

[4]

Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Chem. Soc. Rev., 2019, 48: 5266.

[5]

Rao M R, Fang Y, De Feyter S, Perepichka D F. J. Am. Chem. Soc., 2017, 139: 2421.

[6]

Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 8875.

[7]

Liu X, Li J, Gui B, Lin G, Fu Q, Yin S, Liu X, Sun J, Wang C. J. Am. Chem. Soc., 2021, 143: 2123.

[8]

Sun T, Wang C, Xu Y. Chem. Res. Chinese Universities, 2020, 36(4): 640.

[9]

Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem. Soc. Rev., 2020, 49: 3565.

[10]

Chen L, Furukawa K, Gao J, Nagai A, Nakamura T, Dong Y P, Jiang D. J. Am. Chem. Soc., 2014, 136: 9806.

[11]

Calik M, Auras F, Salonen L M, Bader K, Grill I, Handloser M, Medina D D, Dogru M, Lobermann F, Trauner D, Hartschuh A, Bein T. J. Am. Chem. Soc., 2014, 136: 17802.

[12]

Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[13]

Yuan M, Wang X, Chen L, Zhang M, He L, Ma F, Liu W, Wang S. Chem. Res. Chinese Universities, 2021, 37(3): 679.

[14]

Dey K, Kunjattu H S, Chahande A M, Banerjee R. Angew. Chem. Int. Ed., 2020, 59: 1161.

[15]

Luo Y, Liu J, Liu Y, Lyu Y. J. Polym. Sci. Part A: Polym. Chem., 2017, 55: 2594.

[16]

Mitra S, Sasmal H S, Kundu T, Kandambeth S, Illath K, Diaz D, Banerjee R. J. Am. Chem. Soc., 2017, 139: 4513.

[17]

Springer M A, Liu T J, Kuc A, Heine T. Chem. Soc. Rev., 2020, 49: 2007.

[18]

Crasto de Lima F, Ferreira G J, Miwa R H. Phys. Chem. Chem. Phys., 2019, 21: 22344.

[19]

Jiang W, Huang H, Liu F. Nat. Commun., 2019, 10: 2207.

[20]

Hernández-López L, Piquero-Zulaica I, Downing C A, Piantek M, Fujii J, Serrate D, Ortega J E, Bartolomé F, Lobo-Checa J. Nanoscale, 2021, 13: 5216.

[21]

Cui D, Perepichka D F, MacLeod J M, Rosei F. Chem. Soc. Rev., 2020, 49: 2020.

[22]

Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705.

[23]

Zhang B, Mao H, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141: 11420.

[24]

Wuttke S. Angew. Chem. Int. Ed., 2019, 58: 14024.

[25]

Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem., 2019, 11: 587.

[26]

Huang N, Zhai L, Coupry D, Addicoat M, Okushita K, Nishimura K, Heine T, Jiang D. Nat. Commun., 201, 7: 12325.

[27]

Banerjee T, Haase F, Trenker S, Biswal B P, Savasci G, Duppel V, Moudrakovski I, Ochsenfeld C, Lotsch B V. Nat. Commun., 2019, 10: 2689.

[28]

Peng Y, Li L, Zhu C, Chen B, Zhao M, Zhang Z, Lai Z, Zhang X, Tan C, Han Y, Zhu Y, Zhang H. J. Am. Chem. Soc., 2020, 142: 13162.

[29]

Huang Y, Du P, Shi W X, Wang Y, Yao S, Zhang Z M, Lu T B, Lu X. Appl. Catal. B, 2021, 288: 120001.

[30]

Kim S, Choi H C. Commun. Chem., 2019, 2: 60.

[31]

Guan C Z, Wang D, Wan L J. Chem. Commun., 2012, 48: 2943.

[32]

Liu X H, Guan C Z, Ding S Y, Wang W, Yan H J, Wang D, Wan L J. J. Am. Chem. Soc., 2013, 135: 10470.

[33]

Xu L R, Zhou X, Yu Y X, Tian W Q, Ma J, Lei S B. ACS Nano, 2013, 7: 8066.

[34]

Lan Y, Han X, Tong M, Huang H, Yang Q, Liu D, Zhao X, Zhong C. Nat. Commun., 2018, 9: 5274.

[35]

Calik M, Sick T, Dogru M, Döblinger M, Datz S, Budde H, Hartschuh A, Auras F, Bein T. J. Am. Chem. Soc., 201, 138: 1234.

[36]

Zwaneveld N A A, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L. J. Am. Chem. Soc., 2008, 130: 6678.

[37]

Zhang G, Tsujimoto M, Packwood D, Duong N T, Nishiyama Y, Kadota K, Kitagawa S, Horike S. J. Am. Chem. Soc., 2018, 140: 2602.

[38]

Haase F, Gottschling K, Stegbauer L, Germann L S, Gutzler R, Duppel V, Vyas V S, Kern K, Dinnebier R E, Lotsch B V. Mater. Chem. Front., 2017, 1: 1354.

[39]

Liu X H, Guan C Z, Zheng Q N, Wang D, Wan L J. J. Chem. Phys., 2015, 142: 101905.

[40]

Ding X, Guo J, Feng X, Honsho Y, Guo J, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D. Angew. Chem., Int. Ed., 2011, 50: 1289.

[41]

Keller N, Calik M, Sharapa D, Soni H R, Zehetmaier P M, Rager S, Auras F, Jakowetz A C, Görling A, Clark T, Bein T. J. Am. Chem. Soc., 2018, 140: 16544.

[42]

Feng X, Ding X, Chen L, Wu Y, Liu L, Addicoat M, Irle S, Dong Y, Jiang D. Sci. Rep., 201, 6: 21944.

[43]

Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136: 15885.

[44]

Mo Y P, Liu X H, Wang D. ACS Nano, 2017, 11: 11694.

[45]

Lukose B, Kuc A, Frenzel J, Heine T. Beilstein J. Nanotechnol., 2010, 1: 60.

[46]

Dalapati S, Addicoat M, Jin S, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D. Nat. Commun., 2015, 6: 7786.

[47]

Lu C, Li Y, Wang L M, Yan H J, Chen L, Wang D. Chem. Commun., 2019, 55: 1326.

[48]

Xu S Q, Liang R R, Zhan T G, Qi Q Y, Zhao X. Chem. Commun., 2017, 53: 2431.

[49]

Du Y, Yang H, Whiteley J M, Wan S, Jin Y, Lee S H, Zhang W. Angew. Chem., Int. Ed., 201, 55: 1737.

[50]

Cai S L, He Z H, Li X L, Zhang K, Zheng S R, Fan J, Liu Y, Zhang W G. Chem. Commun., 2019, 55: 13454.

[51]

Cai S L, Zhang K, Tan J B, Wang S, Zheng S R, Fan J, Yu Y, Zhang W G, Liu Y. ACS Macro Lett., 201, 5: 1348.

[52]

Mo Y, Chen T, Dai J, Wu K, Wang D. J. Am. Chem. Soc., 2019, 141: 11378.

[53]

Krishnaraj C, Kaczmarek A M, Jena H S, Leus K, Chaoui N, Schmidt J, Van Deun R, Van Der Voort P. ACS Appl. Mater Interfaces, 2019, 11: 27343.

[54]

Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 201, 52: 11704.

[55]

Qian C, Qi Q Y, Jiang G F, Cui F Z, Tian Y, Zhao X. J. Am. Chem. Soc., 2017, 139: 6736.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/