Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art
Lu Wang , Dong Wang
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 265 -274.
Two-dimensional Covalent Organic Frameworks: Tessellation by Synthetic Art
Covalent organic frameworks(COFs) featuring designable nanoporous structures exhibit many fascinating properties and have attracted great attention in recent years for their intriguing application potential in sensing, catalysis, gas storage and separation, optoelectronics, etc. Rational design of two-dimensional(2D) COFs through judiciously selecting chemical building blocks is critical to acquiring predetermined skeleton and pore structures. In this perspective, we review the reticular synthesis of 2D COFs with different topologies, highlighting the important role of various characterization techniques in crystal structure determination. 2D COFs with simple tessellations have been widely investigated, while the synthesis of complex tessellated COFs is still a great challenge. Some recent examples of 2D COFs with novel topological structures are also surveyed.
Reticular design / Covalent organic framework / Topology / Characterization technique
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
/
| 〈 |
|
〉 |