Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair

Xiangyu Zhang , Shan Bai , Leilei Zang , Xiaoqi Chen , Xiaoyan Yuan

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1111 -1117.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (4) : 1111 -1117. DOI: 10.1007/s40242-022-1480-8
Article

Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair

Author information +
History +
PDF

Abstract

With adjustable amphiphilicity and anionic/cationic charge, biodegradability and biocompatibility, amino acid-based poly(ester amide)s(PEAs) have drawn attention in the research of tissue engineered vascular grafts. In this work, L-phenylalanine-based PEAs with or without L-lysine were synthesized through polycondensation, and ultrafine fibrous grafts consisted of PEAs and poly(ε-caprolactone)(PCL) in given mass ratios were further prepared via blend electrospinning. Surface characterizations by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical structure, and the wettability indicated that the prepared PCL/PEAs electrospun membranes exhibited less hydrophobic than PCL. Tensile results showed that the PCL/PEAs membranes possessed suitable mechanical properties, which could meet the requirements of artificial blood vessels. Cell culture and hemolytic tests exhibited that the PCL/PEAs electrospun membranes are biocompatible. In general, the electrospun grafts of PCL/PEAs could be applied for vascular repair.

Keywords

Poly(ester amide) / Poly(ε-caprolactone) / Electrospun membrane / Mechanical property / Vascular repair

Cite this article

Download citation ▾
Xiangyu Zhang, Shan Bai, Leilei Zang, Xiaoqi Chen, Xiaoyan Yuan. Preparation of Poly(ε-caprolactone)/Poly(ester amide) Electrospun Membranes for Vascular Repair. Chemical Research in Chinese Universities, 2022, 38(4): 1111-1117 DOI:10.1007/s40242-022-1480-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goncalves R C, Banfi A, Oliveira M B, Mano J F. Biomaterials, 2021, 269: 120628.

[2]

Wang Z, Liu L, Mithieux S M, Weiss A S. Trends Biotechnol., 2021, 39: 505.

[3]

Niklason L E, Lawson J H. Science, 2020, 370(6513): 8682.

[4]

Obiweluozor F O, Emechebe G A, Kim D W, Cho H J, Park C H, Kim C S, Jeong I S. Cardiovasc. Eng. Technol., 2020, 11(5): 495.

[5]

Gupta P, Mandal B B. Adv. Func. Mater., 2021, 31: 2100027.

[6]

Leal B B J, Wakabayashi N, Oyama K, Kamiya H, Braghirolli D I, Pranke P. Front. Cardiovasc. Med., 2020, 7: 592361.

[7]

Eghtesad S, Nurminskaya M V. J. Biomater. Sci. Polym. Ed., 2013, 24: 2006.

[8]

Zhu M, Wang Z, Zhang J, Wang L, Yang X, Chen J, Fan G, Ji S, Xing C, Wang K, Zhao Q, Zhu Y, Kong D, Wang L. Biomaterials, 2015, 61: 85.

[9]

Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, Gao X, Li D, Li Y, Zheng X, Zhu X, Kong D, Zhao Q. Biomaterials, 2014, 35: 5700.

[10]

Zhu M, Wu Y, Li W, Dong X, Chang H, Wang K, Wu P, Zhang J, Fan G, Wang L, Liu J, Wang H, Kong D. Biomaterials, 2018, 183: 306.

[11]

Cui C, Wen M, Zhou F, Zhao Y, Yuan X. J. Biomed. Mater. Res. Part A, 2019, 107(2): 371.

[12]

Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X. Mater. Sci. Eng. C: Mater. Biol. Appl., 2018, 85: 37.

[13]

Wen M, Zhi D, Wang L, Cui C, Huang Z, Zhao Y, Wang K, Kong D, Yuan X. ACS Appl. Mater. Interfaces, 2020, 12(6): 6863.

[14]

Bai S, Zhang X, Zang L, Yang S, Chen X, Yuan X. Chem. Res. Chinese Universities, 2021, 37(3): 394.

[15]

Yin A, Zhang K, McClure M J, Huang C, Wu J, Fang J, Mo X, Bowlin G L, Al-Deyab S S, El-Newehy M. J. Biomed. Mater. Res. Part A, 2013, 101(5): 1292.

[16]

Oliveira S, Felizardo T, Amorim S, Mithieux S M, Pires R A, Reis R L, Martins A, Weiss A S, Neves N M. Biomacromolecules, 2020, 21(9): 3582.

[17]

Zhou F, Jia X, Yang Y, Yang Q, Gao C, Hua S, Zhao Y, Fan Y, Yuan X. Acta Biomater., 201, 43: 303.

[18]

Kiros S, Lin S, Xing M, Mequanint K. Ann. Biomed. Eng., 2020, 48(3): 980.

[19]

Knight D K, Gillies E R, Mequanint K. Acta Biomater., 2014, 10(8): 3484.

[20]

Rodríguez-Galán A, Franco L, Puiggalí J. Polymers, 2011, 3: 65.

[21]

Khan W, Muthupandian S, Farah S, Kumar N, Domb A J. Macromol. Biosci., 2011, 11: 1625.

[22]

Katsarava R, Beridze V, Arabuli N, Kharadze D, Chu C C, Won C Y. J. Polym. Sci. A: Polym. Chem., 1999, 37: 391.

[23]

Knight D K, Gillies E R, Mequanint K. Acta Biomater., 2014, 10: 3484.

[24]

Knight D K, Gillies E R, Mequanint K. Biomacromolecules, 2011, 12: 2475.

[25]

Srinath D, Lin S, Knight D K, Rizkalla A S, Mequanint K. J. Tissue Eng. Regen Med., 2014, 8: 578.

[26]

Deng M, Wu J, Reinhart-King C A, Chu C C. Biomacromolecules, 2009, 10: 3037.

[27]

Gao Y, Yi T, Shinoka T, Lee Y U, Reneker D H, Breuer C K, Becker M L. Adv. Healthcare Mater., 201, 5: 2427.

[28]

Sell S A, McClure M J, Barnes C P, Knapp D C, Walpoth B H, Simpson D G, Bowlin G L. Biomed. Mater., 200, 1: 72.

[29]

Walpoth B H, Bowlin G L. Expert Rev. Med. Devices, 2005, 2(6): 647.

[30]

Guo F, Wang N, Wang L, Hou L, Ma L, Liu J, Chen Y, Fan B, Zhao Y. J. Mater. Chem. A, 2015, 3: 4782.

[31]

Hasan A H, Memic A, Annabi N, Hossain M, Paul A, Dokmeci M R, Dehghani F, Khademhosseini A. Acta Biomater., 2014, 10(1): 11.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/