Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer

Weijia Meng , Yang Li , Ziqiang Zhao , Xiaoyu Song , Fanli Lu , Long Chen

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 440 -445.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 440 -445. DOI: 10.1007/s40242-022-1477-3
Article

Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer

Author information +
History +
PDF

Abstract

In recent years, covalent organic frameworks(COFs) are evolving as a novel kind of porous materials for catalysis and molecular separation, gas adsorption, etc. Various functional building blocks have been explored to tune the pore channels, including the pore size and structures. In this article, a new terphenyl(TP) based COF(TP-COF) was developed via a “two-in-one” strategy by using a symmetric A2B2 monomer, i.e., 4,4″-diamino-2′,5′-diformyl-1,1′:4′,1″-terphenyl(DADFTP). The pore size of TP-COF was only 0.99 nm by shortening the arm length of the DADFTP monomer. Freestanding, continuous and ultrathin COF films could be facilely prepared at the air-liquid interface through the modified Langmuir-Blodgett(LB) method. TP-COF films exhibited high rejection of over 90% for dyes removal.

Keywords

“Two-in-one” strategy / Covalent organic framework film / Molecular sieving / Pore engineering

Cite this article

Download citation ▾
Weijia Meng, Yang Li, Ziqiang Zhao, Xiaoyu Song, Fanli Lu, Long Chen. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer. Chemical Research in Chinese Universities, 2022, 38(2): 440-445 DOI:10.1007/s40242-022-1477-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan M J, Wang X, Chen L, Zhang M X, He L W, Ma F Y, Liu W, Wang S. Chem. Res. Chinese Universities, 2021, 37(3): 679.

[2]

Gadwal I, Sheng G, Thankamony R L, Liu Y, Li H F, Lai Z P. ACS Appl. Mater. Interfaces, 2018, 10: 12295.

[3]

Du Y, Yang H S, Whiteley J M, Wan S, Jin Y, Lee S-H, Zhang W. Angew. Chem. Int. Ed., 201, 55: 1737.

[4]

Sun T, Wang C, Xu Y. Chem. Res. Chinese Universities, 2020, 36(4): 640.

[5]

Chen X D, Li Y S, Wan L, Xu Y, Nie A, Li Q, Wu F, Sun W W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31: 1901640.

[6]

Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139: 4258.

[7]

Yan X L, Liu H, Li Y S, Chen W B, Zhang T, Zhao Z Q, Xing G L, Chen L. Macromolecules, 2019, 52: 7977.

[8]

Liu H, Yan X L, Chen W B, Xie Z, Li S, Chen W H, Zhang T, Xing G L, Chen L. Sci. China Chem., 2021, 64: 827.

[9]

Hao W J, Chen D, Li Y S, Yang Z F, Xing G L, Li J, Chen L. Chem. Mater., 2019, 31: 8100.

[10]

Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[11]

Xu H S, Ding S Y, An W K, Wu H, Wang W. J. Am. Chem. Soc., 201, 138: 11489.

[12]

Pang Z F, Zhou T Y, Liang R R, Qi Q Y, Zhao X. Chem. Sci., 2017, 8: 3866.

[13]

Dalapati S, Jin E Q, Addicoat M, Heine T, Jiang D L. J. Am. Chem. Soc., 201, 138: 5797.

[14]

Ascherl L, Sick T, Margraf J, Lapidus S H, Calik M, Hettstedt C, Ka-raghiosoff K, Döblinger M, Clark T, Chapman K W, Auras F, Bein T. Nature Chem., 201, 8: 310.

[15]

Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 201, 138: 4710.

[16]

Liang R R, Cui F Z, A R H, Qi Q Y, Zhao X. CCS Chem., 2020, 2: 139.

[17]

Liang R R, Jiang S Y, A R H, Zhao X. Chem. Soc. Rev., 2020, 49: 3920.

[18]

Pang Z F, Zhou T Y, Liang R R, Qi Q Y, Zhao X. Chem. Sci., 2017, 8: 3866.

[19]

Li Y S, Chen Q, Xu T T, Xie Z, Liu J J, Yu X, Ma S Q, Qin T S, Chen L. J. Am. Chem. Soc., 2019, 141: 13822.

[20]

Li Y S, Chen W B, Xing G L, Jiang D L, Chen L. Chem. Soc. Rev., 2020, 49: 2852.

[21]

Li Y S, Guo L S, Lv Y K, Zhao Z Q, Ma Y H, Chen W H, Xing G L, Jiang D L, Chen L. Angew. Chem. Int. Ed., 2021, 60: 5363.

[22]

Cote A P, El-Kaderi H M, Furukawa H, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007, 129: 12914.

[23]

Shinde D B, Sheng G, Li X, Ostwal M, Emwas A H, Huang K W, Lai Z P. J. Am. Chem. Soc., 2018, 140: 14342.

[24]

Khan N A, Zhang R N, Wu H, Shen J L, Yuan J Q, Fan C Y, Cao L, Olson M A, Jiang Z Y. J. Am. Chem. Soc., 2020, 142: 13450.

[25]

Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 4570.

[26]

Sun B, Zhu C H, Liu Y, Wang C, Wan L J, Wang D. Chem. Mater., 2017, 29: 4367.

[27]

Hao Q, Cheng Z J, Sun B, Zhong Y W, Wan L J, Wang D. J. Am. Chem. Soc., 2019, 141: 19831.

[28]

Kong G D, Pang J, Tang Y C, Fan L L, Sun H X, Wang R M, Feng S, Feng Y, Fan W D, Kang W P, Guo H L, Kang Z X, Sun D F. J. Mater. Chem. A, 2019, 7: 24301.

[29]

Yang H, Yang L X, Wang H J, Xu Z A, Zhao Y M, Luo Y, Nasir N, Song Y M, Wu H, Pan F S, Jiang Z Y. Nat. Commun., 2019, 10: 2101.

[30]

Zhang K, He Z J, Gupta K M, Jiang J W. Environ. Sci.: Water Res. Technol., 2017, 3: 735.

[31]

He X, Sin H, Liang B, Ghazi Z A, Khattak A M, Khan N A, Alanagh H R, Li L S, Lu X Q, Tang Z, Y Adv. Funct. Mater., 2019, 29: 1900134.

[32]

Kong G D, Pang J, Tang Y C, Fan LL, Sun H X, Wang R M, Feng S, Feng Y, Fan W D, Kang W P, Guo H L, Kang Z X, Sun D F. J. Mater. Chem. A, 2019, 7: 24301.

[33]

Wang C X, Li C X, Rutledge E R C, Che S, Lee J, Kalin A J, Zhang C L, Zhou H C, Guo Z H, Fang L. J. Mater. Chem. A, 2020, 8: 15891.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/