Theoretical Study of Stability and Electronic Characteristics in Various Complexes of Psoralen as an Anticancer Drug in Gas Phase, Water and CCl4 Solutions

Marziyeh Mohammadi , Maryam Mahinian , Azadeh Khanmohammadi

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1414 -1424.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (6) : 1414 -1424. DOI: 10.1007/s40242-022-1475-5
Article

Theoretical Study of Stability and Electronic Characteristics in Various Complexes of Psoralen as an Anticancer Drug in Gas Phase, Water and CCl4 Solutions

Author information +
History +
PDF

Abstract

The present research employs density functional theory(DFT) computations to analyze the structure and energy of complexes formed by psoralen drug with alkali(Li+, Na+, K+) and alkaline earth(Be2+, Mg2+, Ca2+) metal cations. The computations are conducted on M06-2X/aug-cc-pVTZ level of theory in the gas phase and solution. The Atoms in Molecules(AIM) and natural bond orbital(NBO) analyses are applied to evaluating the characterization of bonds and the atomic charge distribution, respectively. The results show that the absolute values of binding energies decrease with going from the gas phase to the solution. Furthermore, the considered complexes in the water(as a polar solvent) are more stable than the CCl4(as a non-polar solvent). The DFT based chemical reactivity indices, such as molecular orbital energies, chemical potential, hardness and softness are also investigated. The outcomes show that the considered complexes have high chemical stability and low reactivity from the gas phase to the solution. Finally, charge density distributions and chemical reactive sites of a typical complex explored in this study are obtained by molecular electrostatic potential surface.

Keywords

Psoralen / Cation-π / Density function theory(DFT) / Atoms in Molecules(AIM) / Natural bond orbital(NBO)

Cite this article

Download citation ▾
Marziyeh Mohammadi, Maryam Mahinian, Azadeh Khanmohammadi. Theoretical Study of Stability and Electronic Characteristics in Various Complexes of Psoralen as an Anticancer Drug in Gas Phase, Water and CCl4 Solutions. Chemical Research in Chinese Universities, 2022, 38(6): 1414-1424 DOI:10.1007/s40242-022-1475-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Thakur A, Sharma R, Jaswal V S, Nepovimova E, Chaudhary A, Kuca K. Mini. Rev. Med. Chem., 2020, 20(18): 1838.

[2]

Yarchoan R, Uldrick T S. N. Engl. J. Med., 2018, 378(11): 1029.

[3]

Butrón-Bris B, Daudén E, Rodríguez-Jiménez P. Life, 2021, 11: 1109.

[4]

Ibbotson S H. Front. Med. (Lausanne), 2018, 5: 184.

[5]

Rahman S, Wineman-Fisher V, Nagy P R, Al-Hamdani Y, Tkatchenko A, Varma S. Chem. Eur. J., 2021, 27(42): 11005.

[6]

Patrick S C, Hein R, Docker A, Beer P D, Davis J J. Chem. Eur. J., 2021, 27(39): 10201.

[7]

Osifová Z, Socha O, Čechová L M, Šála M, Janeba Z, Dračínský M. Eur. J. Org. Chem., 2021, 2021(29): 4166.

[8]

Chun Zeng H. Chem. Cat. Chem., 2020, 12(21): 5303.

[9]

Mahmudov K T, Kopylovich M N, Guedes da Silva M F C, Pombeiro A J L. Dalton Trans., 2017, 46: 10121.

[10]

Kashyap C, Ullah S S, Mazumder L J, Guha A K. Comput. Theor. Chem., 2018, 1130: 134.

[11]

Baykov S V, Mikherdov A S, Novikov A S, Geyl K K, Tarasenko M V, Gureev M A, Boyarskiy V P. Molecules, 2021, 26: 5672.

[12]

Barrientos L, Miranda-Rojas S, Mendizabal F. Int. J. Quantum Chem., 2019, 119: e25675.

[13]

Alirezapour F, Khanmohammadi A. Theor. Chem. Acc., 2020, 139: 180.

[14]

Khanmohammadi A, Ravari F. Phys. Chem. Res., 2017, 5: 57.

[15]

Liang Z, Li Q X. J. Agric. Food Chem., 2018, 66(13): 3315.

[16]

Infield D T, Rasouli A, Galles G D, Chipot C, Tajkhorshid E, Ahern C A. J. Mol. Biol., 2021, 433: 167035.

[17]

Yourdkhani S, Chojecki M, Korona T. Phys. Chem. Chem. Phys., 2019, 21: 6453.

[18]

Seong H K, Kyoung-Ran K, Dae-Ro A, Ji E L, Eun G Y, So Y K. ACS Nano, 2017, 11(9): 9352.

[19]

Khemaissa S, Sagan S, Walrant A. Crystals, 2021, 11: 1032.

[20]

Cohen B E. Front. Cell Dev. Biol., 2018, 6: 76.

[21]

Mohammadi M, Khanmohammadi A. Theor. Chem. Acc., 2020, 139: 141.

[22]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Peters-Son G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmay-Lov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staro-Verov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jara-Millo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09 (Revision A.02), 2009, Wallingford CT: Gaussian, Inc.

[23]

Boys S F, Bernardi F. Mol. Phys, 2002, 19: 553.

[24]

Quan C, Stamm B, Maday Y. Math. Models Methods Appl. Sci., 2018, 28: 1233.

[25]

Michalski M, Gordon A J, Berski S. Struct. Chem., 2019, 30: 2181.

[26]

BieglerKönig F, Schönbohm J. J. Comput. Chem., 2002, 23: 1489.

[27]

Weinhold F, Landis C, Glendening E. Int. Rev. Phys. Chem., 201, 35: 399.

[28]

Glendening E D, Reed A E, Carpenter J E, Weinhold F. NBO, Version 3.1(in), 2009, Pittsburg, CT: Gaussian Inc.

[29]

Ludwig M, Himmel D, Hillebrecht H. J. Phys. Chem. A, 2020, 124(11): 2173.

[30]

Bajac D F E, Aucar I A, Aucar G A. Phys. Rev. A, 2021, 104: 012805.

[31]

Dobrowolski J C. ACS Omega., 2019, 4(20): 18699.

[32]

Makino M, Nishina N, Aihara J. J. Phys. Org. Chem., 2017, 31: e3783.

[33]

Mohammadi M, Khanmohammadi A. Theor. Chem. Acc., 2019, 138: 101.

[34]

Alirezapour F, Khanmohammadi A. Acta. Cryst., 2020, C76: 982.

[35]

Alirezapour F, Khanmohammadi A. J. Chin. Chem. Soc., 2021, 68: 1002.

[36]

Szatylowicz H, Domanski M A, Krygowski T M. ChemistryOpen, 2019, 8(1): 64.

[37]

Tsurusaki A, Kamikawa K. Chem. Lett., 2021, 50: 1913.

[38]

Sadlej-Sosnowska N. Struct. Chem., 2019, 30: 1407.

[39]

Koperwas K, Adrjanowicz K, Grzybowski A, Paluch M. Sci. Rep., 2020, 10: 283.

[40]

Heid E, Hunt P A, Schröder C. Phys. Chem. Chem. Phys., 2018, 20(13): 8554.

[41]

Pirgheibi M, Mohammadi M, Khanmohammadi A. Comput. Theor. Chem., 2021, 1198: 113172.

[42]

Mohammadi M, Alirezapour F, Khanmohammadi A. Theor. Chem. Acc., 2021, 140: 104.

[43]

Pirgheibi M, Mohammadi M, Khanmohammadi A. Struct. Chem., 2021, 32: 1529.

[44]

Gad E A M, Azzam E M S, Abdel H S. Egypt. J. Pet., 2018, 27(4): 695.

[45]

Vidhya V, Austine A, Arivazhagan M. Heliyon, 2019, 5(11): e02365.

[46]

Ramalingam A, Gurunathan R K, Chanda N P. ACS Omega., 2020, 5(27): 16885.

[47]

Dheivamalar S, Bansura B K. Heliyon, 2019, 5: e02903.

[48]

Khanmohammadi A, Mohammadi M. J. Chil. Chem. Soc., 2019, 64: 4265.

[49]

Yoosefian M, Mola A, Hajiabadi H, Amiri D R, Mahdavi S S M. Journal of Molecular Liquids, 2018, 264: 115.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/