Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications

Ruixue Sun , Bien Tan

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 310 -324.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 310 -324. DOI: 10.1007/s40242-022-1468-4
Review

Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications

Author information +
History +
PDF

Abstract

Covalent triazine frameworks(CTFs) as a new type of porous organic polymers(POPs) with nitrogen-rich content, high chemical stability, visible light sensitive, metal-free and fully conjugated structure, have gained considerable attention in the last ten years owing to their great potential in extensive applications, especially for photocatalysis systems. In this review, we propose to provide current progress in the design and synthesis of CTFs, along with an emphasis on their photocatalytic applications. Firstly, a brief background including the development of photocatalytic areas is provided. Then, synthetic strategies of CTFs are described and compared. Furthermore, the evolution of CTF materials in photocatalysis fields and strategies for enhancing photocatalytic performance is presented. Finally, some perspectives and challenges on synthesizing high crystalline CTFs and designing excellent catalytic performance of CTF materials are discussed, inspiring the development of CTF materials in photocatalytic applications.

Keywords

Covalent triazine framework(CTF) / Crystalline / Photocatalyst

Cite this article

Download citation ▾
Ruixue Sun, Bien Tan. Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications. Chemical Research in Chinese Universities, 2022, 38(2): 310-324 DOI:10.1007/s40242-022-1468-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barber J. Chem. Soc. Rev., 2009, 38: 185.

[2]

Lewis N S. Science, 2007, 315: 5813.

[3]

Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48(7): 2109.

[4]

Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, Chen M, Xiong T, Zhou C, Li X, Huang D, Zhu Y, Wang Z, Tang J. Chem. Soc. Rev., 2020, 49(12): 4135.

[5]

Fujishima A. Nature, 1972, 238: 37.

[6]

Low J, Dai B, Tong T, Jiang C, Yu J. Adv. Mater., 2019, 31(6): e1802981.

[7]

Cheng L, Xiang Q, Liao Y, Zhang H. Energy & Environmental Science, 2018, 11(6): 1362.

[8]

Ong C B, Ng L Y, Mohammad A W. Renewable and Sustainable Energy Rev., 2018, 81: 536.

[9]

Yang X, Tian L, Zhao X, Tang H, Liu Q, Li G. Appl. Catal. B: Envir., 2019, 244: 240.

[10]

Cao S, Yu J. J. Phys. Chem. Lett., 2014, 5(12): 2101.

[11]

Xu Y, Mao N, Zhang C, Wang X, Zeng J, Chen Y, Wang F, Jiang J-X. Appl. Catal. B: Envir., 2018, 228: 1.

[12]

Wang Z, Yang X, Yang T, Zhao Y, Wang F, Chen Y, Zeng J H, Yan C, Huang F, Jiang J-X. ACS Catal., 2018, 8(9): 8590.

[13]

Guo J, Jiang D. ACS Cent. Sci., 2020, 6(6): 869.

[14]

Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3(2): 400.

[15]

Li H, Wang L, Yu G. Nano Today, 2021, 40: 101247.

[16]

Xia C, Kirlikovali K O, Nguyen T H C, Nguyen X C, Tran Q B, Duong M K, Nguyen Dinh M T, Nguyen D L T, Singh P, Raizada P, Nguyen V-H, Kim S Y, Singh L, Nguyen C C, Shokouhimehr M, Le Q V. Coord. Chem. Rev., 2021, 446: 214117.

[17]

Waller P J, Gandara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

[18]

Li Z, He T, Gong Y, Jiang D. Acc. Chem. Res., 2020, 53(8): 1672.

[19]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42(2): 548.

[20]

Liu M, Guo L, Jin S, Tan B. J. Mater. Chem. A, 2019, 7(10): 5153.

[21]

Wang H, Jiang D, Huang D, Zeng G, Xu P, Lai C, Chen M, Cheng M, Zhang C, Wang Z. J. Mater. Chem. A, 2019, 7(40): 22848.

[22]

Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

[23]

Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Chem. Mater., 2013, 25(9): 1542.

[24]

Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.

[25]

Osadchii D Y, Olivos-Suarez A I, Bavykina A V, Gascon J. Langmuir, 2017, 33(50): 14278.

[26]

Kuhn P, Forget A, Su D, Thomas A, Antonietti M. J. Am. Chem. Soc., 2008, 130: 13333.

[27]

Abednatanzi S, Derakhshandeh P G, Tack P, Muniz-Miranda F, Liu Y-Y, Everaert J, Meledina M, Bussche F V, Vincze L, Stevens C V, Speybroeck V V, Vrielinck H, Callens F, Leus K, Van Der Voort P. Appl. Catal. B: Envir., 2020, 269: 118769.

[28]

Schwinghammer K, Hug S, Mesch M B, Senker J, Lotsch B V. Energy Environ. Sci., 2015, 8(11): 3345.

[29]

Ren S, Bojdys M J, Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I. Adv. Mater., 2012, 24(17): 2357.

[30]

Lan Z A, Fang Y, Zhang Y, Wang X. Angew. Chem. Int. Ed., 2018, 57(2): 470.

[31]

Lan X, Liu X, Zhang Y, Li Q, Wang J, Zhang Q, Bai G. ACS Catal., 2021, 11: 7429.

[32]

Xu T, Li Y, Zhao Z, Xing G, Chen L. Macromolecules, 2019, 52(24): 9786.

[33]

Hu Y, Huang W, Wang H, He Q, Zhou Y, Yang P, Li Y, Li Y. Angew. Chem. Int. Ed., 2020, 59(34): 14378.

[34]

Huang W, Ma B C, Lu H, Li R, Wang L, Landfester K, Zhang K A I. ACS Catal., 2017, 7(8): 5438.

[35]

Huang W, He Q, Hu Y, Li Y. Angew. Chem. Int. Ed., 2019, 58: 8676.

[36]

Kim H M, Jang H K, Hwang T G, Namgoong J W, Kim J Y, Yuk S B, Lee J M, Kim J P. Dyes and Pigments, 2021, 186: 108968.

[37]

Hong H, Wu N, Han M, Guo Z, Zhan H, Du S, Chen B. Mater. Chem. Front., 2021, 5(17): 6568.

[38]

Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. J. Am. Chem. Soc., 2017, 139(34): 11666.

[39]

Sun T, Liang Y, Xu Y. Angew. Chem. Int. Ed., 2021, 60: 1.

[40]

Yang Z, Chen H, Wang S, Guo W, Wang T, Suo X, Jiang D E, Zhu X, Popovs I, Dai S. J. Am. Chem. Soc., 2020, 142(15): 6856.

[41]

Zhu X, Tian C, Mahurin S M, Chai S H, Wang C, Brown S, Veith G M, Luo H, Liu H, Dai S. J. Am. Chem. Soc., 2012, 134(25): 10478.

[42]

Yang Z, Liu T, Wang S, Chen H, Suo X, Wang T, Thapaliya B P, Jiang D-E, Popovs I, Dai S. Chem. Mater., 2021, 33(9): 3386.

[43]

Wang K, Yang L, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew. Chem. Int. Ed., 2017, 56: 14149.

[44]

Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B. Angew. Chem. Int. Ed., 2018, 57(37): 11968.

[45]

Liu M, Jiang K, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, Jin S, Tan B. Adv. Mater., 2019, 31(19): e1807865.

[46]

Guo L, Wang X, Zhan Z, Zhao Y, Chen L, Liu T, Tan B, Jin S. Chem. Mater., 2021, 33(6): 1994.

[47]

Wang X, Zhang S, Li X, Zhan Z, Tan B, Lang X, Jin S. J. Mater. Chem. A, 2021, 9(30): 16405.

[48]

Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Angew. Chem. Int. Ed., 2020, 59(15): 6007.

[49]

Guan L, Cheng G, Tan B, Jin S. Chem. Commun., 2021, 57(42): 5147.

[50]

Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.

[51]

Wu S, Pan Y, Lin H, Li L, Fu X, Long J. ChemSusChem, 2021, 14: 1.

[52]

Jiang X, Wang P, Zhao J. J. Mater. Chem. A, 2015, 3(15): 7750.

[53]

Bi J, Fang W, Li L, Wang J, Liang S, He Y, Liu M, Wu L. Macromol. Rapid Commun., 2015, 36(20): 1799.

[54]

Kuecken S, Acharjya A, Zhi L, Schwarze M, Schomacker R, Thomas A. Chem. Commun., 2017, 53(43): 5854.

[55]

Li L, Fang W, Zhang P, Bi J, He Y, Wang J, Su W. J. Mater. Chem. A, 201, 4(32): 12402.

[56]

Wang C, Zhang H, Luo W, Sun T, Xu Y. Angew. Chem. Int. Ed., 2021, 60: 2.

[57]

Guo L, Niu Y, Xu H, Li Q, Razzaque S, Huang Q, Jin S, Tan B. J. Mater. Chem. A, 2018, 6(40): 19775.

[58]

Wang N, Cheng G, Guo L, Tan B, Jin S. Adv. Funct. Mater., 2019, 29(43): 1904781.

[59]

Guo L, Niu Y, Razzaque S, Tan B, Jin S. ACS Catal., 2019, 9(10): 9438.

[60]

Hu X, Zhan Z, Zhang J, Hussain I, Tan B. Nat. Commun., 2021, 12(1): 6596.

[61]

Qian Z, Wang Z J, Zhang K A I. Chem. Mater., 2021, 33(6): 1909.

[62]

Xu R, Wang X-S, Zhao H, Lin H, Huang Y-B, Cao R. Catal. Sci. & Techn., 2018, 8(8): 2224.

[63]

Zhang S, Wang S, Guo L, Chen H, Tan B, Jin S. J. Mater. Chem. C, 2020, 8(1): 192.

[64]

Huang G, Niu Q, Zhang J, Huang H, Chen Q, Bi J, Wu L. Chem. Eng. J., 2022, 427: 131018.

[65]

Guo S, Yang P, Zhao Y, Yu X, Wu Y, Zhang H, Yu B, Han B, George M W, Liu Z. ChemSusChem, 2020, 13(23): 6278.

[66]

Yan Y-L, Fang Q-J, Pan J-K, Yang J, Zhang L-L, Zhang W, Zhuang G-L, Zhong X, Deng S-W, Wang J-G. Chem. Eng. J., 2021, 408: 127358.

[67]

Wang Q, Wang J, Wang J C, Hu X, Bai Y, Zhong X, Li Z. ChemSusChem, 2021, 14(4): 1131.

[68]

Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

[69]

Huang W, Byun J, Rorich I, Ramanan C, Blom P W M, Lu H, Wang D, Caire da Silva L, Li R, Wang L, Landfester K, Zhang K A I. Angew. Chem. Int. Ed., 2018, 57(27): 8316.

[70]

Huang W, Huber N, Jiang S, Landfester K, Zhang K A I. Angew. Chem. Int. Ed., 2020, 59(42): 18368.

[71]

Cyrine A, Wei H, Zhang K A I. Front. Chem. Sci. Eng., 2020, 14(3): 397.

[72]

Zhuang Y, Zhu Q, Li G, Wang Z, Zhan P, Ren C, Si Z, Li S, Cai D, Qin P. Mater. Res. Bull., 2022, 146: 111619.

[73]

Huang L, Luo Z, Zhou Y N, Zhang Q, Zhu H, Zhu S. Mater. Today Chem., 2021, 20: 100475.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/