Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR)

Shunkai Chang , Cuiyan Li , Hui Li , Liangkui Zhu , Qianrong Fang

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 396 -401.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 396 -401. DOI: 10.1007/s40242-022-1465-7
Article

Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR)

Author information +
History +
PDF

Abstract

Exploring novel materials deriving from earth resources to substitute for platinum(Pt) electrocatalyst to promote oxygen reduction reaction(ORR) of fuel cell cathode is very important. Herein, we have exploited two crystallographic thiophene-sulfur covalent organic frameworks(COFs), termed JUC-607 and JUC-608, as electrocatalysts that exhibited good ORR performances. These thiophene-sulfur COFs exhibited high stability, and their functional groups acting as active centers in the ORR can be precisely determined. Notably, due to a larger aperture for mass transfer and electrons transport, JUC-608 displayed a growing electrochemical performance, leading to a better ORR activity. Thus, this study will provide a new strategy for designing heteroatom-based COF materials for high-performance electrochemical catalysis.

Keywords

Covalent organic framework(COF) / Oxygen reduction reaction / Thiophene-sulfur

Cite this article

Download citation ▾
Shunkai Chang, Cuiyan Li, Hui Li, Liangkui Zhu, Qianrong Fang. Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR). Chemical Research in Chinese Universities, 2022, 38(2): 396-401 DOI:10.1007/s40242-022-1465-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov B V, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard W A III, Huang Y, Duan X. Science, 201, 354: 1414.

[2]

Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X. Science, 201, 354: 1410.

[3]

Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 201, 351: 361.

[4]

Wan W, Wang Q, Zhang L, Liang H, Chen P, Yu S-H. J. Mater. Chem. A, 201, 4: 8602.

[5]

Fernandez J L, Raghuveer V, Manthiram A, Bard A J. J. Am. Chem. Soc., 2005, 127: 13100.

[6]

Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Mavrikakis M, Adzic R R. J. Am. Chem. Soc., 2005, 127: 12480.

[7]

Zhang S, Shao Y, Yin G, Lin Y. J. Mater. Chem. A, 2013, 1: 4631.

[8]

Liang H W, Zhuang X, Bruller S, Feng X, Mullen K. Nat. Commun., 2014, 5: 4973.

[9]

Xia Z, An L, Chen P, Xia D. Adv. Ener. Mater., 201, 6: 1600458.

[10]

Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Adv. Mater., 201, 28: 10117.

[11]

Zhu Y-N, Cao C-Y, Jiang W-J, Yang S-L, Hu J-S, Song W-G, Wan L-J. J. Mater. Chem. A, 201, 4: 18470.

[12]

Kone I, Xie A, Tang Y, Chen Y, Liu J, Chen Y, Sun Y, Yang X, Wan P. ACS Appl. Mater. Interfaces., 2017, 9: 20963.

[13]

Amiinu I S, Zhang J, Kou Z, Liu X, Asare O K, Zhou H, Cheng K, Zhang H, Mai L, Pan M, Mu S. ACS Appl. Mater. Interfaces, 201, 8: 29408.

[14]

Li D, Jia Y, Chang G, Chen J, Liu H, Wang J, Hu Y, Xia Y, Yang D, Yao X. Chem, 2018, 4: 2345.

[15]

Côte A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[16]

Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.

[17]

Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 201, 1: 16068.

[18]

Diercks C S, Yaghi O M. Science, 2017, 355: 1585.

[19]

Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47: 3450.

[20]

Han S S, Furukawa H, Yaghi O M, Goddard W A III J. Am. Chem. Soc., 2008, 130: 11580.

[21]

Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139: 4258.

[22]

Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed., 2008, 47: 8826.

[23]

Du Y, Yang H, Whiteley J M, Wan S, Jin Y, Lee S H, Zhang W. Angew. Chem. Int. Ed., 201, 55: 1737.

[24]

Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133: 19816.

[25]

Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

[26]

Peng Y, Hu Z, Gao Y, Yuan D, Kang Z, Qian Y, Yan N, Zhao D. ChemSusChem., 2015, 8: 3208.

[27]

Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc., 201, 138: 12332.

[28]

Sun Q, Aguila B, Perman J, Nguyen N, Ma S Q. J. Am. Chem. Soc., 201, 138: 15790.

[29]

Oh H, Kalidindi S B, Um Y, Bureekaew S, Schmid R, Fischer R A, Hirscher M. Angew. Chem. Int. Ed., 2013, 52: 13219.

[30]

Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe M Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136: 6570.

[31]

Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136: 15885.

[32]

Cai S L, Zhang Y B, Pun A B, He B, Yang J H, Toma F M, Sharp I D, Yaghi O M, Fan J, Zheng S R, Zhang W G, Liu Y. Chem. Sci., 2014, 5: 4693.

[33]

Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Scence, 2017, 357: 673.

[34]

Guo Z B, Zhang Y Y, Dong Y, Li J, Li S W, Shao P P, Feng X, Wang B. J. Am. Chem. Soc., 2019, 141: 1923.

[35]

Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11: 587.

[36]

Chang J H, Xu G J, Li H, Fang Q R. Chem. J. Chinese Universities, 2020, 41(7): 1609.

[37]

Li S S, Zhao W J, Li H, Fang Q R. Chem. J. Chinese Universities, 2020, 41(6): 1384.

[38]

Liang R R, Cui F Z, A. R. H., Qi Q Y, Zhao X. CCS Chem., 2020, 2: 139.

[39]

Wang Z T, Li H, Yan S C, Fang Q R. Acta Chimica Sinica, 2020, 78: 63.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/