Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction

Xudong Qin , Xiaohui Tang , Yu Ma , Hong Xu , Qing Xu , Weiting Yang , Cheng Gu

Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 433 -439.

PDF
Chemical Research in Chinese Universities ›› 2022, Vol. 38 ›› Issue (2) : 433 -439. DOI: 10.1007/s40242-022-1463-9
Article

Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction

Author information +
History +
PDF

Abstract

The extraction of uranium from aqueous solution is highly desirable for sustaining the increasing demand for environmental safety and nuclear fuel. Herein, we report a strategy using a two-step covalent modification for the synthesis of covalent organic frameworks(COFs) with high-density amidoxime chelate groups at periphery. The introduction of dense amidoxime groups plays a pivotal role in uranium adsorption. The resulting COF exhibits strong affinity with the distribution coefficient of 5.2×104 mL/g and a high adsorption capacity of 319.9 mg/g. The strategy could be expanded to identify and remove different contaminants by introducing special functional groups.

Keywords

Two-step post-synthetic modification / High-density amidoxime / Uranium adsorption

Cite this article

Download citation ▾
Xudong Qin, Xiaohui Tang, Yu Ma, Hong Xu, Qing Xu, Weiting Yang, Cheng Gu. Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction. Chemical Research in Chinese Universities, 2022, 38(2): 433-439 DOI:10.1007/s40242-022-1463-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sholl D S, Lively R P. Nature, 201, 532: 435.

[2]

Lu Y. Nat. Chem., 2014, 6: 175.

[3]

Yue Y, Mayes R T, Kim J, Fulvio P F, Sun X G, Tsouris C, Chen J, Brown S, Dai S. Angew. Chem., Int. Ed., 2013, 52: 13458.

[4]

Liu C, Hsu P C, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y. Nat. Energy, 2017, 2: 17007.

[5]

Xie J, Wang Y, Liu W, Yin X, Chen L, Zou Y, Diwu J, Chai Z, Albrecht-Schmitt T E, Liu C, Wang S. Angew. Chem., Int. Ed., 2017, 56: 7500.

[6]

Abney C W, Mayes R T, Saito T, Dai S. Chem. Rev., 2017, 117: 13935.

[7]

Wang Y, Liu Z, Li Y, Bai Z, Liu W, Wang Y, Xu X, Xiao C, Sheng D, Diwu J, Su J, Chai Z, Albrecht-Schmitt T E, Wang S. J. Am. Chem. Soc., 2015, 137: 6144.

[8]

Bopp C J, Lundstrom C C, Johnson T M, Sanford R A, Long P E, Williams K H. Sci. Technol., 2010, 44: 5927.

[9]

Zhu Y, Cao W, Fan Y, Deng Y, Xu C. J. Semicond., 2014, 35: N2.

[10]

Komarneni S, Kozai N, Paulus W J. Nature, 2001, 410: 771.

[11]

Yuan Y, Meng Q H, Faheem M, Yang Y J, Li Z N, Wang Z Y, Deng D, Sun F X, He H M, Huang Y H, Sha H Y, Zhu G S. ACS Cent. Sci., 2019, 5: 1432.

[12]

Ma S, Huang L, Ma L, Shim Y, Islam S M, Wang P, Zhao L D, Wang S, Sun G, Yang X, Kanatzidis M G. J. Am. Chem. Soc., 2015, 13: 3670.

[13]

Ling L, Zhang W X. J. Am. Chem. Soc., 2015, 137: 2788.

[14]

Wang Z Y, Meng Q H, Ma R C, Zou X Q, Yuan Y, Zhu G S. Chem., 2020, 6: 1683.

[15]

Wang Z Y, Ma R C, Meng Q H, Yang Y J, Ma X J, Ruan X H, Yuan Y, Zhu G S. J. Am. Chem. Soc., 2021, 143: 14523.

[16]

Yuan Y, Yang Y J, Ma X J, Meng Q H, Wang L L, Zhao S, Zhu G S. Adv. Mater., 2018, 30: 1706507.

[17]

Camacho L M, Deng S G, Parra R R. J. Hazard. Mater., 2010, 175: 393.

[18]

Budnyak T M, Gładysz-Płaska A, Strizhak A V, Sternik D, Komarov I V, Majdan M, Tertykh V A. ACS Appl. Mater. Interfaces, 2018, 10: 6681.

[19]

Hadi P, To M, Hui C, Lin C S K, McKay G. Water Res., 2015, 73: 37.

[20]

Gładysz-Płaska A, Grabias E, Majdan M. Prog. Nucl. Energy, 2018, 104: 150.

[21]

Tavengwa N T, Cukrowska E, Chimuka L. J. Radioanal. Nucl. Chem., 2015, 304: 933.

[22]

Ma C, Gao J, Wang D, Yuan Y, Wen J, Yan B, Zhao S, Zhao X, Sun Y, Wang X, Wang N. Adv. Sci., 2019, 6: 1900085.

[23]

Liu L J, Yang W T, Gu D X, Zhao X J, Pan Q H. Front. Chem., 2019, 7: 607.

[24]

Dou W X, Yang W T, Zhao X J, Pan Q H. Inorg. Chem. Front., 2019, 6: 3230.

[25]

Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.

[26]

Wang L L, Zeng C, Xu H, Yin P C, Chen D C, Deng J, Li M, Zheng N, Gu C, Ma Y G. Chem. Sci., 2019, 10: 1023.

[27]

Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019, 6: 1900547.

[28]

Wu H Y, Chi F T, Zhang S, Wen J, Xiong J, Hu S. Micropor. Mesopor. Mat., 2019, 288: 10956.

[29]

Yuan D, Chen L, Xiong X, Yuan L, Liao S, Wang Y. Chem. Eng. J., 201, 285: 358.

[30]

Xie L, Wang Y, Wang Y, Li X, Tian Q, Liu D, Sun G, Wang X. Mater. Lett., 2018, 220: 47.

[31]

Piechowicz M, Abney C W, Thacker N C, Gilhula J C, Wang Y, Veroneau S S, Hu A, Lin W. ACS Appl. Mater. Interfaces, 2017, 9: 27894.

[32]

Ling C, Liu X, Yang X, Hu J, Li R, Pang L, Ma H, Li J, Wu G, Lu S, Wang D. Ind. Eng. Chem. Res., 2017, 56: 1103.

[33]

Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J, Wang J, Chai Z, Wang S. ACS Appl. Mater. Interfaces, 2017, 9: 32446.

[34]

Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30: 1705479.

[35]

Yang T T, Tian C, Yan X, Xiao R Y, Lin Z. Environ. Sci.: Nano., 2021, 8: 1469.

[36]

Qin X D, Yang W T, Yang Y H, Gu D X, Guo D Y, Pan Q H. Inorg. Chem., 2020, 59: 9857.

[37]

Tang X H, Chen Z X, Xu Q, Su Y, Xu H, Horike S, Zhang H H, Li Y, Gu C. CCS Chem., 2021, 3: 2926.

[38]

Qin X D, Yang W T, Yang W K, Ma Y, Li M L, Chen C, Pan Q H. Micropor. Mesopor. Mat., 2021, 323: 111321.

[39]

Xie W, Huang M. Energy Convers. Manag., 2018, 159: 42.

[40]

Yang W T, Bai Z Q, Shi W Q, Yuan L Y, Tian T, Chai Z F, Wang H, Sun Z M. Chem. Commun., 2013, 49: 10415.

[41]

Cheng G, Zhang A, Zhao Z W, Cha Z M, Hu B W, Han B, Ai Y J, Wang X K. Sci. Bull., 2021, 66: 1994.

[42]

Zhang C R, Cui W R, Jiang W, Li F F, Wu Y D, Liang R P, Qiu J D. Environ. Sci.: Nano, 2020, 7: 842.

[43]

Sun Q, Aguila B, Earl L D, Abney C, Wojtas W L, Thallapally P K, Ma S. Adv. Mater., 2018, 30: 170547.

[44]

Xiao H X, Zhi W Y, Le L G, Yuan T, Zhi G, Li W, Wen H Y, Li X Y, Feng L. Adv. Sci., 2019, 6: 1900547.

[45]

Zhang J, Zhou L H, Ji Z M, Li X F, Qi Y, Yang C T, Guo X H, Chen S Y, Long H H, Ma L J. Nanoscale, 2020, 12: 24044.

[46]

Wen R, Li Y, Zhang M C, Guo X H, Li X, Li X F, Han J, Hu S, Tan W, Ma L J, Li S J. J. Hazard. Mater., 2018, 358: 273.

[47]

Zhang M C, Li Y, Bai C Y, Guo X H, Han J, Hu S, Jiang H Q, Tan W, Li S J, Ma L J. ACS Appl. Mater. Interfaces, 2018, 10(34): 28936.

[48]

Yu B X, Ye G, Chen J, Ma S Q. Environ. Pollut., 2019, 253: 39.

[49]

Aguila B, Sun Q, Cassady H, Abney C W, Li B, Ma S. ACS Appl. Mater. Interfaces, 2019, 11: 30919.

[50]

Wang D, Song J N, Wen J, Yuan Y H, Liu Z L, Lin S. Adv. Energy Mater., 2018, 8: 1802607.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/